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Motor Control after Human SCI through Activation
of Muscle Synergies under Spinal Cord Stimulation

Richard Cheng, Yanan Sui, Dimitry Sayenko, and Joel W. Burdick

Abstract—Spinal cord stimulation (SCS) has enabled motor
recovery in paraplegics with motor complete spinal cord injury
(SCI). However, the physiological mechanisms underlying this
recovery are unknown. This study analyzes muscle synergies in
two motor complete SCI patients under SCS during standing,
and compares them with muscle synergies in healthy subjects, in
order to help elucidate the mechanisms that enable motor control
through SCS. One challenge is that standard muscle synergy
extraction algorithms, such as non-negative matrix factorization
(NMF), fail when applied to SCI patients under SCS. We develop
a new algorithm – rShiftNMF – to extract muscle synergies in
these cases. We find muscle synergies extracted by rShiftNMF
are significantly better at interpreting electromyography (EMG)
activity, and resulting synergy features are more physiologically
meaningful. By analyzing muscle synergies from SCI patients and
healthy subjects, we find that (1) SCI patients rely significantly
on muscle synergy activation to generate motor activity, (2)
interleaving SCS can selectively activate an additional muscle
synergy that is critical to SCI standing, and (3) muscle synergies
extracted from SCI patients under SCS differ substantially from
those extracted from healthy subjects. We provide evidence that
after spinal cord injury, SCS influences motor function through
muscle synergy activation.

I. INTRODUCTION

Motor activity requires a complex mapping from the brain to
the spinal cord and then to individual muscles. In 1994, Mussa-
Ivaldi et al. observed that in frogs, total muscle activity was
encoded as a linear superposition of a few motor primitives,
suggesting a low-dimensional, linear representation of motor
output [1]. Muscle synergies capture these motor primitives
and represent the low-dimensional, linear motor behavior [2]–
[4]; they are defined as the coordinated recruitment of a group
of muscles with a specific activation signal. The idea is that
each muscle synergy represents a network of neurons activated
by a single neural command. Each neuronal network excites a
specific pattern of motoneurons, resulting in fixed patterns of
muscle activity following a similar activation signal. A current
theory is that the spinal cord controls functional motor activity,
in large part, by modulating activity of muscle synergies –
rather than controlling individual muscles [5]. These muscle
synergies constitute a feedforward drive, but may incorporate
closed-loop control mechanisms dependent on peripheral sen-
sory input [4], [6]. Fig. 1 illustrates two muscle synergies
contributing to electromyography (EMG) activity.

Animal studies provide substantial evidence for muscle syn-
ergies encoded in the spinal cord. When stimulating different
parts of the spinal cord together or separately (electrically or
chemically), researchers have observed that resulting motor
activity from joint stimulation is approximately a linear com-
bination of the motor activity induced by separate stimulation

Fig. 1: Illustration of two muscle synergies composed to
reconstruct EMG activity. W represents the muscle activation
pattern, and H represents the activating neural signal for two
different muscle synergies. This figure was adapted from [7].

[8]–[12]. By measuring neuron activity in the spinal cord
concurrently with muscle activity in different animals, studies
suggest that muscle synergies are encoded in the spinal cord
through sets of dedicated interneurons [13], [14].

Although such experiments have not been done in humans,
it has been shown that human muscle activity can be accurately
described by the linear superposition of a few muscle synergies
[7], [11], [15]–[20]. Synergies are extracted from human EMG
measurements during specific tasks (e.g. reaching, stepping,
etc.), and represent low-rank approximations of the muscle
activity – i.e. a small number of muscle synergies linearly
combine to compose overall muscle activity.

Non-negative matrix factorization (NMF) is a widely used
method for searching for this low rank approximation of
muscle activity [21]. This method extracts muscle activation
patterns W (representing the coordinated recruitment of a
group of muscles) and neural activation signals H (represent-
ing the activation waveform that excites the specific group of
muscles), which best fit the EMG data. The result is a set
of muscle synergies that represent the EMG activity, and the
quality of this representation can be measured by the residual
error between the reconstructed EMG and measured EMG.

Tresch et al. showed that the set of muscle synergies
extracted is robust to the choice of matrix factorization al-
gorithm [22]. We focus on NMF because, in addition to
good performance and robustness to noise, it ensures positive
activation (a physiological assumption on muscle synergies)
and does not assume orthogonality of the different synergies.

However, such algorithms have not yet been used to extract
muscle synergies from patients with spinal cord injury (SCI)
under spinal cord stimulation (SCS), as these cases pose
additional challenges that cause the standard algorithms [22] to
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fail. This paper explores the existence, extraction, and control
of muscle synergies in paraplegics with motor complete SCI
under SCS. Recent studies have shown that motor complete
SCI patients can recover significant motor function under SCS,
even demonstrating overground stepping after intensive ther-
apy [23]–[27]. However, the neural mechanisms by which this
recovery is achieved are not well understood. This study aims
to elucidate some of these mechanisms through analysis of
muscle synergies. A recent animal study showed that targeted
neuromodulation of muscle synergies in SCI rats could provide
significant improvements in motor control [28]. Thus, a better
understanding of muscle synergies in human SCI may lead to
improved therapies.

The first section of this paper introduces a novel algorithm
to extract muscle synergies from SCI patients under SCS, as
standard algorithms fail due to the presence of consistent time
delays between the activation of different muscle groups. The
second part of this study analyzes the muscle synergy acti-
vation patterns and the number of muscle synergies induced
by SCS during standing, and finds that proper stimulation can
selectively activate an additional muscle synergy that produces
markedly improved functional behavior. The last part of this
study briefly compares muscle synergies extracted from SCI
patients attempting to stand under SCS, with those extracted
from healthy human subjects during quiet standing. We find
that the muscle synergies resulting from SCS are significantly
different from healthy muscle synergies.

The contributions of this paper are:
• Introduction and application of the rShiftNMF algorithm

to enable extraction of muscle synergies in SCI patients
under SCS,

• Computational evidence of intact muscle synergies in the
spinal cord after SCI that are activated through SCS,

• Comparison of SCI patient muscle synergies with healthy
subject muscle synergies,

• Identification of a spinal stimulation strategy that im-
proves SCI patient standing performance via selective
activation of an additional muscle synergy.

A preliminary version of this work appeared in [29], but
focused on the rShiftNMF algorithm for synergy extraction.

II. METHODS

A. Experiments

1) SCI Patient Trials: Data was collected from two com-
plete (ASIA A), paraplegic SCI patients implanted with
a Medtronic 5-6-5 epidural electrode array for SCS with
a Medtronic RestoreAdvanced Neurostimulator. The 16-
electrode array was implanted over the spinal cord segments
L1-S1. The patients (referred to as patients A and B) gave their
written informed consent to participate in the study, whose
experimental procedures were approved by the local ethics
committee. For patient A, experiments were performed over
two non-consecutive weeks, six months apart, and a total of
109 trials of stimulation/EMG data were gathered (we’ll refer
to the earlier week as session 1 and the later week as session
2). For patient B, experiments were performed over one week,
and a total of 15 trials of stimulation/EMG data were gathered.

Before the first experiments were done, the patients underwent
80 sessions of intensive stand training (1 hour, 5 sessions per
week) under SCS, in which they were encouraged to stand for
as long as possible with the least amount of assistance.

The choice of stimulating electrodes recruited on the ar-
ray and their polarities (i.e. the stimulation patterns) were
modified between trials. This choice was determined by a
machine learning algorithm, which continually proposed dif-
ferent “safe” stimuli (high probability of eliciting non-painful
response), and continually tested good ones against each other
to search for the optimal stimulation patterns (resulting in
independent standing) [30], [31]. Stimulation frequency and
pulse width were kept constant between trials at 25 Hz and
200 µs, respectively. For a fixed stimulation pattern, frequency,
and pulse width, SCS amplitude was ramped upward until
reaching a well-performing value.

For four of the experimental trials with patient A and
one of the trials with patient B, rather than using a single
fixed stimulation pattern, 4 different stimulating patterns were
interleaved together in a sequence with a frequency of 10 Hz.
Therefore, the stimulation pattern was time-varying (changing
every ≈ 25ms), and the 4 chosen stimulation patterns would
repeat every 100ms. We will refer to these time-varying stim-
uli as interleaving stimulation. Empirically well-performing
stimulation was used for each of the 4 patterns.

During each trial, the patient attempted to stand with
minimal support for 1 to 5 minutes under spinal stimulation.
The patient achieved full weight-bearing standing with no as-
sistance when empirically-optimal stimulating configurations
were used. Neither patient could achieve leg muscle control
or report any sensory function without stimulation.

We utilized measurements from 10 muscles (5 muscle
groups) taken using sEMG (surface electromyography) at a
sampling frequency of 2000 Hz. The 5 muscle groups were:
VL (vastus lateralis), MH (medial hamstring), MG (medial
gastrocnemius), TA (tibialis anterior), and SOL (soleus). The
EMG was high-pass filtered at 3 Hz, rectified, and low-pass
filtered at 30 Hz using a 5th order butterworth filter.

Note that the filtering applied here is significantly less
aggressive (retains a much larger signal bandwidth) than the
pre-process filtering typically applied to EMG in other muscle
synergy studies. For example, the high-pass and low-pass
filter cutoff frequencies are set at 35/40 respectively in [15],
or 35/35 in [16], whereas our high pass and low-pass filter
cutoff frequencies are set at 3/30, respectively. Our larger-
bandwidth filter is necessary to retain important structure in
the EMG spectrum induced by spinal stimulation, which is
highly structured in SCI patients under SCS. This allows us
to analyze detailed phenomenon at the muscle activation level
that would otherwise be smoothed out. Figure 2a illustrates
the experimental procedure for each trial.

After every trial, clinicians quantified standing quality uti-
lizing a discrete scoring system that ranges from 1 to 10, with
1 being the worst and 10 being the best. From scores 1 to
5, the standing is not independent but requires less external
assistance as the score increases. From scores 6 to 10, standing
is overall independent and full-weight bearing. As the score
increases, standing is more stable and durable.
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(a)

(b)

Fig. 2: Experimental procedure for stimulation, data collection,
and analysis for (a) SCI patients and (b) healthy subjects.

2) Healthy Subject Trials: Data was collected from five
healthy participants (age: 27.2 ± 4.5 years; height: 168 ± 9
cm; weight: 62.3 ± 10.9 kg). They had no medical history
of neurological disorders. All subjects gave their written in-
formed consent to participate in the study, whose experimental
procedures were approved by the local ethics committee.

Each participant stood quietly with bare feet, eyes open, and
arms hanging along the sides of the body for the duration of
60 s. The participant was instructed to stand quietly and to
refrain from any voluntary movements.

We utilized measurements from 4 muscle groups (VL, MH,
MG, SOL) taken using sEMG at a sampling frequency of 4000
Hz, using a PowerLab 16/35 series DAQ system. To compare
results with the SCI patients, we downsampled the signal to
emulate a sampling frequency of 2000 Hz, and then the EMG
was high-pass filtered at 3 Hz, rectified, and then low-pass
filtered at 30 Hz using a 5th order butterworth filter. Fig. 2b
illustrates the experimental procedure for each subject.

B. Extraction of Muscle Synergies

The NMF algorithm developed in [21] has been used
extensively to extract muscle synergies in humans and animals
[5], [32]. The algorithm efficiently solves the optimization
problem in Equation 1 using alternating least squares with
multiplicative updates to find a local optimum.

argmin
W,H

||EMG−
∑
d

Wn,dHd,t||2 (1)

In Equation 1, EMG refers to the rectified and filtered EMG
signal – an N-by-T matrix composed of N signals (1 for each
muscle) of length T. Wn,d represents the activation pattern of
each muscle synergy where n indexes each of the N muscles,
and d indexes each of the D muscle synergies (i.e. each
column represents the muscle activation pattern for synergy
d). Hd,t represents the activating signal for each muscle
synergy where t indexes each time step of the activating
signal, and d indexes each of the D muscle synergies (i.e.
each row represents the activating signal for synergy d). This
is illustrated in Fig. 1.

However, analyzing muscle synergies in SCI patients under
SCS introduces a unique challenge, which causes NMF to
perform poorly in these cases. It is known that neural activation
signals take differing times to reach different muscles, based
on conduction delays along axons. In patients with SCI under
spinal stimulation, these delays are well-defined and very
prominent, since an activating signal is externally induced at
a specific area of the spinal cord at a fixed frequency. This
activating signal must propagate through the interneuronal
and motorneuron pathways down the lower limbs, resulting
in measurable and diverse delays in the EMG response at
distal muscles (see Fig. 3a). Therefore, extracted muscle
synergies must account for these delays, which NMF cannot
do. The implicit requirement imposed by the NMF algorithm
for synergy extraction is that each neural signal generated by
the spinal cord must reach every muscle simultaneously.

In order to account for conduction delays when extracting
muscle synergies, we develop a variant of NMF that can
account for continuous delays (and incorporate delay priors),
referred to as rShiftNMF. The mathematical framework has
parallels to time-varying synergies (TVS) [33], [34], although
our experiments deal with delays on a much shorter time-scale
and within the same synergy profile. To avoid confusion, we
will refer to the muscle synergies extracted by rShiftNMF as
Conduction-Delayed Synchronous Synergies (CDSS).

First, the NMF optimization problem is reformulated to
include delays, τ , as follows in Equation 2. An algorithm for
efficiently solving this problem is derived in [35].

argmin
W,H,τ

||EMG−
∑
d

Wn,dHd,t−τn,d
||2 (2)

By adding a delay parameter, τ , to the original optimization
problem, we allow for delays, τn,d, in arrival time (of neural
signal, d) at each individual muscle, n. The index (n, d) refers
to the delay for muscle n in the dth muscle synergy. These
delays allow us to eliminate the assumption that all muscles
are activated simultaneously by a given muscle synergy. The
optimization problem in Equation 2 is solved by first doing a
Fourier transform on the parameters W,H, τ to conveniently
express the delay as multiplication by a complex exponential.
Then we use alternating least squares with multiplicative
updates to iteratively converge on parameter estimates [35].

However, we also must ensure that the calculated delays
are consistent with neurophysiology. Since Equation 2 defines
a non-convex problem, convergence to a local optima may
result in non-physiological delays. Consider that a generic
10Hz periodic signal would be equally likely to have a 10ms
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delay and a 110ms delay. Hence, the optimization problem
above may lead to non-physiological estimates of the delay τ ,
given that (1) many local optima exist and (2) many delays
τ can lead to similarly good factorizations. However, based
on the physiology of the CNS, we can estimate the order of
magnitude of expected conduction delays. For example, neural
signals travel down motor neurons at speeds on the order of
100metersec , and the length of a lower limb is between 0.5 to 1
meters, so a signal sent from the spinal cord should take order
of magnitude 10 milliseconds longer to reach a thigh muscle
than shank muscle with patient-specific variations.

Given order of magnitude estimates of expected delays, we
can modify the algorithm to incorporate a prior, T priorn,d , on the
delays to ensure that the delays remain consistent with physi-
ology. Assuming the synergy reconstruction error is Gaussian
(i.e. P(EMG|W,H, τ) = N (

∑
dWn,dHd,t−τn,d

,Γ)), then
adding a Gaussian prior with mean T prior on the delay, τ , in
a Bayesian formulation of the problem is equivalent to adding
L2 regularization to the underlying optimization problem, as
shown in Equation 3 below:

argmin
W,H,τ

||EMG−
∑
d

Wn,dHd,t−τn,d
||2 + λ||τ − T prior||2.

(3)
The new optimization problem can be solved by alternating
least squares as in [35], and only the update law for the
delays τn,d must be modified by linearly adding in the gra-
dient/Hessian corresponding to the regularization term. This
defines the rShiftNMF algorithm (code available at https:
//github.com/rcheng805/rShiftNMF). We refer to synergies ex-
tracted by rShiftNMF as conduction-delayed synchronous syn-
ergies (CDSS), and those extracted by NMF as synchronous
synergies (SS) [11].

In order to ensure that the effect of each muscle is balanced
when dealing with the optimization, we normalize the EMG
activity for each channel before running the rShiftNMF and
NMF algorithms. We then de-normalize the data (i.e. re-
multiply the normalization factors into W ) after the synergies
have been extracted, so that it accurately reflects the muscle
activation pattern of the different muscles.

Note that since the rShiftNMF algorithm uses 10 more free
parameters per synergy (for 10 muscles) compared with NMF,
it is expected to better fit to the data. To address this, we run
the algorithm on training data to obtain proper delays τ for
the synergies, and then cross-validate by running the algorithm
with the same fixed delay parameters, τ , on test data. Then
we can directly compare the rShiftNMF fit results with NMF,
since they utilize the same free parameters (after fixing τ ).

To avoid overfitting, we also do four-fold validation of the
muscle synergies. We run the rShiftNMF algorithm on training
data, then fix both the activation pattern W and delays τ , and
run the same algorithm on four sets of test data. We do the
same for the NMF algorithm, fixing just the activation pattern
W . This discourages overfitting to the data.

C. Estimating the Number of Muscle Synergies

Note that in the muscle synergy extraction formulation
(Equation 3), the number of muscle synergies D must be

predefined. Most work on muscle synergies utilizes the vari-
ance accounted for (VAF) metric defined below to estimate
the proper number of muscle synergies [15]–[19]:

V AF = 1− 1

N

N∑
n=1

( ||EMG(n) −
∑D
d=1Wn,dHd,t−τn,d

||2

||EMG(n)||2
)
,

where n indexes each muscle. This is a measure of how well
the muscle synergies reconstruct the underlying EMG activity.
In the NMF formulation, we have τ = 0 (no delays).

Typically the number of synergies is defined as the mini-
mum D such that the VAF passes some threshold. However,
the number of synergies will depend on many factors like the
threshold used or the pre-process filtering of the EMG [36],
[37]. Other work has attempted to improve on these methods
by cross-validating over several trials [38], or utilizing differ-
ent likelihood measures and information criteria [22].

In this work, we utilize the following 2-step method to
determine the number of muscles synergies, similar to the
procedure in [38]:
• Determine the number of synergies by thresholding the

slope of the VAF curve. For the threshold, we preliminar-
ily set the number of synergies once the VAF increases
by less than 0.15. This cutoff was chosen by visual
inspection of the trends in the VAF curve.

• Validate the result by looking at the muscle activation
patterns, W , of the synergies across different intervals of
the patient’s EMG, and see if they are consistent (i.e. the
dot product between them is greater than 0.9). If they are
consistent, we accept the number of muscle synergies to
be correct. Otherwise, we lower the synergy number.

This procedure robustly identifies the number of synergies
present by using both thresholding and cross-validation.

III. RESULTS

A. Analysis of SCI Patient EMG Activity

1) Improvement in Synergy Extraction with rShiftNMF: We
extracted muscle synergies from the EMG activity of the SCI
patients using rShiftNMF (to obtain CDSS) as well as NMF
(to obtain SS). As discussed in Section II-B, delays in muscle
activation between muscle groups are prominent in paraplegics
undergoing SCS-induced standing (illustrated in Fig. 3a). Fig.
3b provides a comparison with a healthy subject’s EMG, where
we notice the absence of well-defined delays.

Muscle activation delays are only accounted for in the
rShiftNMF algorithm, so we expect it to better capture low-
dimensional muscle synergy structure in the EMG activity.
We confirm this by examining the VAF of the EMG using
synergies extracted by each algorithm. This is shown in Fig. 4,
and we see that rShiftNMF is effective at capturing the EMG
activity with few muscle synergies. With cross-validation, a
single synergy extracted by rShiftNMF is able to account for
≈ 60% of the variance in the EMG signals, whereas NMF
achieves that reconstruction accuracy only with 3-4 synergies.
The fact that the performance of rShiftNMF remains high (and
significantly better than NMF) with cross-validation suggests
that we are able to capture meaningful structure in the EMG
activity with few muscle synergies.
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Fig. 3: (Left) Exemplary EMG traces for MG and SOL
muscles for SCI patient under spinal stimulation. Note that
EMG activity is highly structured and periodic. Furthermore,
MG and SOL have similar waveforms, with SOL activated
slightly after MG. (Right) Exemplary EMG traces for MG and
SOL muscles measured from a healthy subject. EMG activity
is more variable without structured delays.

One may note that the VAF observed in Fig. 4 is lower
than values typically recorded in the literature, which is due to
the fact that (1) we retain a much larger frequency spectrum
of the EMG signals in pre-processing, and (2) we validate
the results across four different EMG intervals. The important
features to note are improved performance compared to NMF,
and consistency of VAF after cross-validation.

Fig. 4: The variance accounted for (VAF) plotted against the
number of synergies extracted. In all cases, VAF was computed
using 4-fold validation (i.e. tested on 4 different test sections
of the EMG) with fixed delay, τ , and activation pattern, W .
For each plot, the VAF with the rShiftNMF algorithm was
compared to the VAF with the NMF algorithm. (Left) Results
for patient A; (Right) Results for patient B.

To validate the results of the rShiftNMF algorithm, we
check that the algorithm’s calculated delays, τ , are consistent
with expected conduction delays, as discussed in section II-B.
If the delays, τ , were inconsistent with neurophysiology, this
would be an indicator that the rShiftNMF algorithm might be
fitting to noise in the EMG activity rather than meaningful
structure in the CNS. The delays when considering one syn-
ergy are shown in Fig. 5a. This is the most relevant case since
only one synergy is activated in the vast majority of trials,
as will be discussed in Section III-A2. A table showing the
delays (and their variation) across all trials when considering
different number of synergies is shown in Fig. 5b. The SSCA
cases will be discussed in Section III-B, but currently serve to

(a)

(b)

Fig. 5: (a) Muscle activation delay for each muscle in the case
of 1 muscle synergy (normalized to the left MH). (b) Table
of muscle activation delay for different number of synergies.
SSCA denote trials in which 2 muscle synergies are active (see
Section III-B). In SSCA trials, delays are more in line with
expectations in the 2 synergy case. In all other trials, delays
better match expectations in the 1 synergy case. Omitted
delays indicate that the synergy did not involve those muscles.

show that in almost all (non-SSCA) cases, computed delays are
non-physiological when considering more than one synergy.

Note that left/right muscles within each muscle group have
similar delays, and that delays increase as we go from MH to
V L to TA/MG to SOL muscles, which reflects an ordering
based on distance from the spinal cord. We also note that
the observed delays are in line with the order of magnitude
delay expected (≈ 10ms) as discussed in Section II-B. The
consistency of the delays with physiological models is fur-
ther evidence that rShiftNMF muscle synergies are capturing
physiological phenomena for the SCI patients under SCS that
would be missed with muscle synergies extracted by NMF.

For further validation, we looked for correlations between
the patient’s standing ability and muscle synergy features ex-
tracted by rShiftNMF vs. NMF. Recall that therapists provided
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a score of standing ability, on a scale from 1-10, for each
trial (i.e. the measured score). We trained different regression
functions (i.e. Random Forest, SVM, linear functional) to see
if we could predict the resulting standing score based on
muscle synergy features. We found that for patient A, muscle
synergy features extracted by rShiftNMF were more strongly
correlated with functional performance than synergy features
extracted by NMF. We did not repeat the analysis with patient
B due to the small number of trials (15) and lower variance
in standing scores (e.g. smaller score range from 3-8).

Fig. 6a shows prediction accuracy based on linear regression
with EMG power and rShiftNMF muscle synergy features.
Using these features to estimate patient standing scores, we
found that 97% were within ±2 of the therapist-measured
score. In comparison, if we did not include the muscle
synergy features, only 91% were within ±2 of the measured
score. Fig. 6b compares score classification accuracy – ability
to distinguish independent standing (score ≥ 6) from non-
independent standing – using synergy features from either
NMF or rShiftNMF and 3-fold cross-validation. The results
indicate stronger correlation with rShiftNMF muscle synergy
features compared to NMF synergy features. Thus adding
rShiftNMF synergy features leads to significant improvements
in prediction accuracy, suggesting that these synergies capture
some meaningful structure that correlate with motor activity.

The prediction results, combined with the accurate modeling
of physiological delays and significantly improved EMG re-
construction, suggests that rShiftNMF (i.e. CDSS) provides a
more useful and physiological description of muscle synergies
for SCI patients under SCS. Therefore, for the rest of this
section, we use muscle synergies to refer to CDSS.

2) Motor Activity through Single Synergy Activation: Uti-
lizing the methodology described in Section II-C, we calcu-
lated that for 96% of trials (all trials using fixed stimulation
pattern), only one muscle synergy was activated during patient
standing under SCS. The muscle activation pattern, W , for this
synergy was relatively stable (see black bars in Fig. 7). Our
results suggest that SCS influences standing ability (i.e. muscle
activity) by activating/manipulating this muscle synergy.

Based on these results, one might argue that the activated
muscle synergy arises simply due to direct stimulation of dor-
sal roots with conduction delays to the muscles. However, by
looking at cases where a second muscle synergy is activated,
the following section provides support that SCS can activate
neural circuits beyond the dorsal roots.

B. Activation of Additional Synergy with SCS

For 4 of the 109 trials for patient A and 1 of the 15 trials
for patient B, we found two distinct and consistent muscle
synergies were active during patient standing under SCS (using
same methodology in section II-C). We found that these trials
where 2 synergies were active also corresponded to the highest
performance trials and occurred when, and only when, the
patient was stimulated with interleaving stimulation patterns
(as described in section II-A1) rather than a single fixed stim-
ulation pattern. In this section, we argue that the interleaving
stimulation achieves selective spinal circuit activation (SSCA)

(a)

(b)

Fig. 6: (a) Accuracy in standing score prediction using linear
regression with rShiftNMF muscle synergy features and raw
EMG power. Measured score is the therapist-graded standing
score, and the estimated score is computed by our regression
method. (b) Standing score prediction performance based on
muscle synergy features only, using scoring scale between 1-
10. First and second columns show mean absolute error in
score prediction, whereas the third column shows percentage
of trials correctly predicted within ±2 of true score.

of a second spinal circuit (i.e. muscle synergy). We will refer
to the trials with 2 synergies activated as SSCA trials.

First, we show that for the SSCA trials, the activation
pattern, W , is distinct for the two muscle synergies – the first
synergy is the same muscle synergy common to all the non-
SSCA trials, and the second muscle synergy is distinct from
the first. Fig. 7 compares the mean activation pattern for the
muscle synergy from non-SSCA trials, to the activation pattern
of the two muscle synergies from the SSCA trials. We find
that the first muscle synergy from the SSCA trials aligns with
the muscle synergy extracted from the non-SSCA trials (with
respect to the activation pattern W ) – mainly activating the
medial hamstring and lower leg muscles (MH, MG and SOL).
The second synergy primarily activates the VL/MH muscle
groups, showing a distinct pattern from synergy 1.

We tested the statistical significance of this hypothesis
using a permutation test based on minimum statistical energy
developed in [39]. We calculated the p-value corresponding to
the hypothesis that the first synergy activation pattern from the
SSCA trials matches the synergy activation pattern from the
non-SSCA trials, and found that p = 0.23 for patient A session
1, p = 0.11 for patient A session 2, and p = 0.64 for patient
B. We cannot reject the hypothesis that the activation patterns
come from the same distribution at the 10% confidence level.
However, if we consider the second muscle synergy from the
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SSCA trials, we can reject the hypothesis that it comes from
the same distribution as the muscle synergy of the non-SSCA
trials; we compute p-values of p = 0.01 for patient A session
1, p = 0.02 for patient A session 2, and p = 0.06 for patient
B. These results suggest that the interleaving stimulation
introduces a distinct second muscle synergy (responsible for a
complementary set of muscles) during patient standing, while
also activating the original muscle synergy.

We must note that since MH is activated significantly by
both synergies 1 and 2, its activation level within each synergy
may change across runs of the rShiftNMF algorithm. This is
because there are different ways to equivalently split the MH
activity between synergies 1 and 2. The relative activation of
the other muscles is stable across runs.

Fig. 7: Comparison of mean activation pattern for non-SSCA
trials (single synergy - black bar) with activation patterns for
synergy 1 (grey bar) and synergy 2 (white bar) of SSCA trials.
Note that the confidence intervals for the synergy 1 activation
pattern in the SSCA trials overlaps with the activation pattern
of the non-SSCA trials. (Top) Patient A (Session 1); (Middle)
Patient A (Session 2); (Bottom) Patient B

The introduction of the second muscle synergy (activating
the VL/MH muscles) increases the complexity of the muscle
activity, requiring the composition of 2 neural commands in-
stead of 1. Fig. 8 illustrates this increased complexity through
an additional muscle synergy. In the SSCA trials, the 2nd

synergy introduces a significant (in amplitude) and different
“basis signal”, which allows the spinal cord to generate more
complex muscle activity. In contrast, for the non-SSCA trials,
if we attempt to extract two synergies by the rShiftNMF
algorithm, the 2nd synergy barely contributes to the muscle
activity and its waveform significantly mirrors the 1st synergy
(see Fig. 8), essentially becoming a redundant synergy. This
is also reflected by the marginal increase in VAF seen in the
non-SSCA trials from adding a second synergy.

It is important to note that the therapist-rated standing scores

Fig. 8: Representative illustration of synergy activation wave-
form, H , for SSCA trials vs. non-SSCA trials. Note that in
SSCA trials (left plot), the synergy 2 activation waveform
plays a significant role in composing EMG activity. In non-
SSCA trials (right plot), adding a second synergy results in an
activation waveform that is similar to the synergy 1 activation
waveform with much smaller amplitude.

were highest for the SSCA trials (the score was ≥ 8.75
for all SSCA trials). Therefore, activation of the 2nd muscle
synergy (corresponding to a separate neural circuit) is critical
to independent standing in stimulated SCI patients.

1) Controlling for Experimental/Stimulation Differences:
Recall that for the SCI experiments, all measurements were
taken from the same groups of muscles using the same pro-
cedure, with the patients attempting the same biomechanical
task (standing). Therefore, we can attribute activation of the
additional muscle synergy to the changes in stimulation.

Furthermore, each stimulation pattern within the interleav-
ing stimulation sequences was also tested as a fixed stimulation
pattern. However, we never activated the second muscle syn-
ergy in the fixed stimulation cases, even using the same stim-
ulation patterns from the interleaving stimulation sequences.
Therefore, utilization of the time-varying (interleaving) combi-
nation of stimuli dictates activation of the second synergy – not
the stimulation pattern of the electrode array. This suggests that
SCS is not only stimulating dorsal roots, but also activating
neural circuits in the spinal cord. Otherwise we would expect
to see the muscle activation pattern, W , depend directly on
the stimulation pattern (i.e. stimulation site).

2) Spinal Activation Mapping: Next, we mapped the EMG
activity for each muscle synergy to regions of the spinal
cord. Based on charts collected in Kandel [40], we mapped
muscle activity to spinal cord segments and calculated the
resulting activation of each spinal segment from each muscle
synergy. Fig. 9(a) shows the approximate mapping of the
muscle synergies to the spinal cord for the non-SSCA trials
and SSCA trials for both patients For the visualization, we
have excluded the MH muscle group since it is activated
significantly by both muscle synergies. We see that the first
synergy for the SSCA trials and only synergy for the non-
SSCA trials maps to the lower lumbo-sacral spinal cord region
(≈ L5-S2), whereas the second synergy for the SSCA trials
maps to the upper lumbo-sacral spinal cord (≈ L2-L4). Thus
we can interpret the effect of the interleaving spinal stimulation
(for SSCA trials) as activating a separate, previously dormant
neural circuit in the spinal cord, which modulates motor pools
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approximately in the upper lumbo-sacral spinal cord.
The muscle synergies are visualized in Fig. 9(b), where we

see the 2nd synergy activates motor pools in a higher region
of the spinal cord, which is critical to good, stable standing.

Fig. 9: (a) Visualization of activation of spinal cord regions re-
sulting from each muscle synergy’s activation. The left region
represents spinal activation of the muscle synergy from non-
SSCA trials. The middle region represents spinal activation of
the first muscle synergy from the SSCA trials, whereas the
right region represents spinal activation of the second muscle
synergy from the SSCA trials.
(b) Visualization of approximate spinal cord regions activated
by each muscle synergy for SSCA trials (on the right) and
non-SSCA trials (on the left).

3) Validation with Artificially Imposed Delays: One con-
cern we address here is whether the rShiftNMF algorithm
extracts meaningful muscle synergies rather than overfitting
to muscle activation delays. In other words, we want to show
that the differences between muscle synergies (and the number
of muscle synergies) do not arise as artifacts of the computed
conduction delays, τ , but rather come from the structure in the
EMG waveform and muscle activation pattern. To do this, we
ran experiments adding artificial delays to different muscles
in the data (e.g. swapping the delays between VL and SOL).

In these simulations, the rShiftNMF algorithm successfully
captures the modifications in the delays, τ (i.e. the results
in Fig. 5 change to account for artificially introduced shifts).
We also find that the activation pattern, W , activating signal,
H , and computed number of muscle synergies remain very
similar (i.e. Figures 7, 8, and 9 remain very similar) after
swapping/modifying muscle activation delays, τ . This indi-
cates that extracted muscle synergies arise from meaningful
structure in the EMG waveform, and are not artificial artifacts
arising from computed conduction delays. As a more concrete
example, the VL/MH muscle synergy (i.e. second synergy) is
extracted based on the EMG structure, regardless of whether
the muscle activations are artificially delayed or shuffled.

4) Biomechanics of SCI Standing under Stimulation: Note
that the muscle synergy activation pattern, W (seen in Fig. 7),
is similar for both SCI patients. This inter-patient consistency

is in line with previous work showing that muscle synergies are
reasonably robust across healthy subjects [41], and suggests
that the synergies serve important biomechanical functions.

Interestingly, the muscle synergy activation pattern for the
SSCA trials for both patients are not only similar to each
other, but consistent with principles for maximally efficient
(minimum required torque) stable standing. The authors in
[42] found that maximally efficient stable standing should
utilize 2 muscles for knee flexion/extension, 2 muscles for
ankle dorsiflexion/plantarflexion, 1 muscle for hip abduc-
tion/adduction, and 1 muscle for hip flexion/extension. This
is consistent with the SSCA trials, where VL/MH serve as
two muscles for knee flexion/extension (and MH can provide
hip extension), MG/SOL serve as two muscles for ankle
dorsiflexion/plantarflexion, and TA is not active. Synergy 2
likely serves to stiffen the knee joint by proper co-activation
of MH and VL. Furthermore, [43] found that TA muscle
activity in healthy elderly individuals surprisingly decreases
postural steadiness in standing, which is consistent with the
SCI patients under SCS exhibiting no TA activation.

These results allow us to hypothesize that (after stand train-
ing in the clinic) stimulated SCI patients attempt maximally
efficient stable standing. In the SSCA trials, SCI standing
activates muscle patterns that are maximally efficient for
stable standing, and activation of the second muscle synergy
is crucial to activate the two necessary muscles for knee
flexion/extension. However, in the non-SSCA trials, stable
standing is not as well achieved because the absence of the
second synergy leads to only one of the two necessary muscles
for knee flexion/extension being active.

Due to the limited number of muscles we measured from
and limited sample size, we cannot make a strong statement
about the biomechanics arising from muscle synergy activa-
tion. However, the consistency of our results with prior litera-
ture suggests that this hypothesis is worth further exploration.

C. Comparison with Healthy Subject Muscle Synergies

We briefly look at EMG activity from five healthy subjects
during quiet standing, and utilize NMF and rShiftNMF to look
for muscle synergy structure. From Fig. 10 we see that a
single cross-validated muscle synergy reconstructs about 80%
of EMG activity, and we compute that a single synergy is ac-
tivated in each patient using our previous methodology. More
importantly, we note that rShiftNMF does not perform better
than standard NMF under cross-validation. In fact the muscle
activation pattern, W , extracted using either method is vitually
the same. Therefore, it seems that incorporation of delays, τ , is
not necessary nor desirable when extracting muscle synergies
from healthy subjects. In other words, healthy subjects utilize
synchronous synergies (SS) rather than CDSS.

We also found that the muscle activation pattern, W , for
the healthy subjects is significantly different from both SCI
patients (for fair comparison, we re-ran analysis for the SCI
patient utilizing only the set of 8 muscles common to all
patients/subjects). For every patient/subject, the dot product
Whealth · WSCI < 0.6 (where Whealth · WSCI = 1 would
indicate a perfect match). Thus, the SCI muscle synergies



9

Fig. 10: The VAF plotted against number of synergies ex-
tracted for healthy subjects using rShiftNMF vs NMF. The
mean VAF across all subjects for a given synergy number was
used for each data point. Synergies were cross-validated with
fixed delay, τ , and activation pattern, W (or just W for NMF).

differ substantially from healthy subject synergies not only
in synchronization of signal delays, but in the pattern of
muscle activation during standing. Therefore, while some form
of muscle synergies are present in SCI patients, they are
significantly modified (or excited differently) from healthy
subject synergies due to spinal injury/stimulation.

IV. DISCUSSION

A. Potential factors influencing muscle synergy features

Prior work has shown that the number of extracted muscle
synergies can depend on the biomechanical constraints of the
task [44], as well as the recorded muscles [37]. We note
that during the experiments, all measurements were taken
consistently with the same group of muscles, with the patients
attempting the same standing task. In this way, while measure-
ment biases and biomechanical constraints may influence the
properties of the individual extracted muscle synergies, these
factors should not significantly impact the analyses comparing
across different trials and patients. In particular, activation of
the additional muscle synergy using interleaving stimuli was
realized under the same biomechanical constraints with the
same recorded muscles as all other trials, indicating that spinal
stimulation was key in influencing the change in motor activity.

B. Note on additional synergy from interleaving stimulation

We claim that interleaving spinal stimulation (i.e. time-
varying stimuli) during SCI patient standing leads to activation
of an additional neural circuit (i.e. a second muscle synergy),
which significantly improves patient standing ability. Within
our dataset, all cases of interleaving stimulation led to ac-
tivation of two muscle synergies, whereas all cases of fixed
stimulation led to activation of the same single synergy. The re-
sults in this study suggest that interleaving stimulation directly
leads to activation of important additional muscle synergies.
How the interleaving stimulation achieves this remains an open
question, and learning this mechanism will be important in
enabling us to selectively activate other synergies.

Our results are reminiscent of the animal experiments de-
scribed in Section I, where stimulation at different sites of the
animal’s spinal cord led to activation of muscle synergies, and

co-activation of those sites often led to a linear combination
of those muscle synergies. While other studies have relied on
post-processing EMG activity to look for muscle synergies
in human EMG data, the fact that we are able to mirror the
synergy phenomenon in [1], [10]–[12] with humans (activate
and combine synergies through spinal stimulation) provides
further evidence of the encoding of (potentially modified)
muscle synergies in the human spinal cord after SCI.

Furthermore, studies have hypothesized that neurological
injury/disease leads to a decrease in the number of muscle
synergies activated when composing muscle activity [7], [19],
[45], [46]. These prior efforts suggest that synergies may be
“merged” after injury. However, the fact that proper stimu-
lation activated an additional muscle synergy suggests that
muscle synergies are still encoded in the spinal cord after SCI.
Hence, we hypothesize that spinal injury impairs the ability
of the CNS to activate muscle synergies, even though those
neural circuits remain sufficiently intact to be activated by
SCS. Recovery of synergy activity after stroke using functional
electrical stimulation has been explored [47], though our study
looks at re-activating and utilizing existing neural circuitry.

Note that these muscle synergies may not be the same syn-
ergies present in healthy subjects – they may be pathological,
differing from healthy muscle synergies due to the patient’s
spinal cord injury and intense training in the clinic. However,
our results show that some form of muscle synergies are still
encoded in the human spinal cord after SCI.

V. CONCLUSION

This is the first human study analyzing muscle synergies in
SCI patients under SCS, and our results shed light on muscle
synergies as a key physiological mechanism by which SCS
generates motor function. We successfully extracted muscle
synergies from SCI patients under spinal cord stimulation
using a novel algorithm, and provided evidence that muscle
synergies are sufficiently intact (to enable standing abilities)
in the human spinal cord after SCI and can be selectively
activated through proper SCS. Patient motor function is heav-
ily influenced through activation of these muscle synergies,
and SCI standing ability can be greatly improved through
activation of an additional muscle synergy.

The limited number of SCI patients in this study prevents
us from making conclusive statements about muscle syn-
ergies across the SCI population. However, we believe the
consistency of our results (with prior literature and between
our patients) is promising, and that these findings will have
significant implications for rehabilitation as we better learn
how to activate and train critical muscle synergies through
targeted neuromodulation and motor training.
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