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Abstract—Objective: Spinal cord stimulation (SCS) has enabled
recovery of motor control in paraplegics with complete spinal
cord injury (SCI), but the physiological mechanisms underlying
this recovery are poorly understood. This study analyzes muscle
synergies in SCI patients under SCS and healthy subjects to
elucidate the mechanisms enabling motor control through SCS.
Methods: Muscle synergy extraction algorithms, such as NMF
(non-negative matrix factorization), fail when applied to SCI
patients under SCS. We develop a new algorithm — rShiftNMF
— to extract muscle synergies in SCI cases. Then, we analyze
muscle synergies from two complete SCI patients under SCS,
and compare them with muscle synergies from five healthy
subjects. Results: Muscle synergies extracted by rShiftNMF are
significantly better at interpreting electromyography (EMG) from
SCI patients under SCS, and resulting synergy features are
more physiologically meaningful. Our analysis shows that (1)
SCI patients rely more heavily on muscle synergy activation to
generate motor activity than healthy subjects do, (2) optimal
SCS selectively activates an additional muscle synergy which
proves critical to SCI standing, and (3) motor activity resulting
from optimal SCS is consistent with biomechanically efficient
standing. Conclusion: Our algorithm successfully extracts muscle
synergies in SCI patients. We provide evidence that muscle
synergies are encoded in the human spinal cord, and that SCS
selectively activates these synergies and thereby significantly
influences motor function. Significance: Our results suggest that
an important physiological mechanism enabling motor control
under SCS is muscle synergy activation. Thus, properly targeting
muscle synergies through SCS may improve efficacy of spinal
stimulation therapies.

I. INTRODUCTION

Motor activity requires a complex mapping from the brain to
the spinal cord and then to individual muscles. In 1994, Mussa-
Ivaldi et al. observed that in frogs, total muscle activity was
encoded as a linear superposition of a few motor primitives,
suggesting a low-dimensional, linear representation of motor
output [1]. Muscle synergies capture these motor primitives
and represent the low-dimensional, linear motor behavior;
they are defined as the coordinated recruitment of a group of
muscles with a specific activation signal. The idea is that each
muscle synergy represents a network of interneurons activated
by a single neural command. Each interneuronal network
excites a specific pattern of motoneurons, resulting in fixed
patterns of muscle activity following a similar activation sig-
nal. A current theory is that the spinal cord controls functional
motor activity, in large part, by modulating activity of muscle
synergies — as opposed to controlling individual muscles. Note
that these muscle synergies constitute a closed-loop control
mechanism, as the pattern of muscle activity generated by the

interneuronal network depends on peripheral sensory input.
Fig. 1 shows the concept of how muscle synergies contribute
to electromyography (EMG) activity.
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Fig. 1: Illustration of two muscle synergies composed to
reconstruct EMG activity. W represents the activation pattern
of muscles, and H represents the activating neural signal for
two different muscle synergies. This figure was adapted from

[2].

Animal studies have provided substantial evidence for mus-
cle synergies. When stimulating different parts of the spinal
cord together or separately (electrically or chemically), re-
searchers have observed that resulting motor activity from joint
stimulation is approximately a linear combination of the motor
activity induced by separate stimulation [3]-[5]. By measuring
activity from neurons in the spinal cord concurrently with
muscle activity (in monkeys, cats, and frogs), studies show that
muscle synergies may be encoded in the spinal cord through
sets of dedicated interneurons [6], [7].

Although such experiments have not been done in humans,
it has been shown that human muscle activity can be accurately
described by the linear superposition of a few muscle synergies
[2], [3], [8]-[12]. Synergies are extracted from human EMG
measurements during specific tasks (e.g. reaching, stepping,
etc...), and represent low-rank approximations of the muscle
activity — i.e. a small number of muscle synergies linearly
combine to compose overall muscle activity. Studies have
indicated that many muscle synergies are associated with
specific movement kinematics (such as the different parts of
a walking gait) and may be shared across tasks [8]-[11].

Non-negative matrix factorization (NMF) is a widely used
method for searching for this low rank approximation of
muscle activity. This method extracts muscle activation pat-
terns W (representing the coordinated recruitment of a group
of muscles) and neural activation signals H (representing



the activation waveform that excites the specific group of
muscles), which best fit the EMG data. The result is a set of
muscle synergies that represent the EMG activity, and we can
easily measure how good this representation is by the resulting
error between the reconstructed EMG and measured EMG.

Tresch et al. showed that the set of muscle synergies
extracted is reasonably robust to the choice of matrix fac-
torization algorithm [13]. Different factorization algorithms
were used in their study (PCA, FA, ICA, NMF, ICAPCA,
and pICA) and it was found that NMF could identify the
correct muscle synergies, even in the presence of noise. In
addition to good performance and robustness to noise, NMF
is a reasonable choice for muscle synergy extraction given that
it ensures positive activation (a physiological assumption on
muscle synergies) and does not assume independence of the
different synergies (as methods such as PCA and ICA would
do).

Several recent studies have suggested that after neurological
injury (i.e. stroke, SCI, Parkinson’s disease), patients exhibit
fewer or merged muscle synergies [2], [12], [14]-[17]. Patients
essentially lose muscle activity “complexity” since they acti-
vate fewer muscle synergies during given tasks, which results
in decreased functional performance. Therefore, these studies
suggest the desirability to retain an adequate number of muscle
synergies to enable effective task behavior.

This paper explores the existence, extraction, and control of
muscle synergies in paraplegics with motor complete spinal
cord injury (SCI) under spinal cord stimulation (SCS). Until
recently, it was believed that motor function could not be
recovered after complete SCI, but studies have shown that
motor complete SCI patients can recover motor function under
spinal cord stimulation (SCS) [16], [18], [19].

The first section of this paper introduces a novel algorithm
to extract muscle synergies from SCI patients under SCS, as
standard algorithms fail due to the presence of consistent time
delays between the activation of different muscle groups —
these delays are prevalent in SCI patients under SCS (see
Fig. 2). The second part of this study analyzes the muscle
synergy activation patterns and the number of muscle syner-
gies induced by SCS, and finds that proper stimulation can
selectively activate an additional muscle synergy and produce
markedly improved functional behavior. The last part of this
study compares muscle synergies extracted from SCI patients
attempting to stand under SCS, with those extracted from
healthy human subjects standing. We find that the muscle
activity resulting from SCS is significantly different from
healthy muscle activity (see Fig. 11) and highly dependent
on the spinal stimulation given.

The contributions of this paper are:

e Introduction and application of the rShiftNMF algorithm
to enable extraction of muscle synergies in SCI patients
under SCS,

e Evidence of muscle synergies retained in the human
spinal cord after SCI, and activated through SCS,

e Comparison of SCI patient muscle synergies with healthy
subject muscle synergies,

o Identification of SCS that improves SCI patient standing
performance via selective activation of an additional

muscle synergy.

A preliminary version of part of this work appeared in [20],
which only focused on discussion the rShiftNMF algorithm for
muscle synergy extraction.

II. METHODS
A. Experiments

1) Spinal Cord Injury Patients: Data was collected from
two complete, paraplegic SCI patients implanted with a
Medtronic 5-6-5 epidural electrode array for SCS with a
Medtronic RestoreAdvanced Neurostimulator. The patients
(referred to as patients A and B) gave their written informed
consent to participate in the study, whose experimental proce-
dures were approved by the local Institutional Review Board.
For patient A, experiments were performed over two non-
consecutive weeks, six month apart, and a total of 109 trials of
stimulation/EMG data were gathered (we’ll refer to the earlier
week as session 1 and the later week as session 2). For patient
B, experiments were performed over one week, and a total of
15 trials of stimulation/EMG data were gathered. For each
trial, the patient attempted to stand with minimal support for
1 to 5 minutes under spinal stimulation.

The choice of stimulating electrodes recruited on the array
and their polarities (i.e. the stimulation patterns) were modified
between trials. This choice was determined by a machine
learning algorithm which continually proposed different “safe”
stimuli (high probability of eliciting non-painful response),
and continually tested good ones against each other to search
for the optimal stimulation patterns (resulting in independent,
natural standing) [21], [22]. Stimulation frequency and pulse
width were kept constant between trials at 25 Hz and 200 us,
respectively. For a fixed stimulation pattern, frequency, and
pulse width, SCS amplitude was ramped upward until reaching
a well-performing value.

The patient achieved full weight-bearing standing with
minimal assistance when empirically-optimal stimulating con-
figurations were used.

We utilized measurements from 10 muscles (left and right
muscles of 5 muscle groups) taken using sEMG (surface
electromyography) at a sampling frequency of 2000 Hz. The
5 muscle groups were: VL (vastus lateralis), MH (medial
hamstring), MG (medial gastrocnemius), TA (tibialis anterior),
and SOL (soleus). The EMG was high-pass filtered at 1 Hz,
rectified, and low-pass filtered at 60 Hz using a 3rd order
butterworth filter.

It is important to note that the filtering applied here is
significantly less aggressive (retains a much larger signal
bandwidth) than the pre-process filtering typically applied to
EMG in other muscle synergy studies. For example, the low-
pass and high-pass filter cutoff frequencies are set at 35/40
respectively in [8], or 35/35 in [9], whereas our filter cutoff
frequencies are set at 1/60. Our higher-bandwidth filter is
necessary to retain important parts of our EMG spectrum
induced by spinal stimulation, as seen by visual inspection
of the frequency spectrum.

Table I describes how the clinicians quantified standing
quality. We utilized a discrete scoring system that ranges from



1 to 10, with 1 being the worst and 10 being the best. From
scores 1 to 5, the standing is not independent but requires less
and less assistance by bungees across the knees or manual
assistance from trainers as the score increases. From scores 6
to 10, standing is overall independent and full-weight bearing.
As the score increases, standing is more natural, stable, and
durable. After every trial, a score on the overall standing
quality was assigned.

TABLE I: The Scoring Criterions

[ Score | Descriptions ]
1-2 Assisted by bungees or trainers (max)
3-4 Assisted by bungees or trainers (mod)
5 Assisted by bungees or trainers (min)
6-7 Hip: Not assisted, back arched
Knee: Not assisted, loss of extension during shifting
8-10 Hip: Not assisted, back straight
Knee: Not assisted, extended during shifting

For four of the experimental trials with patient A and one of
the trials with patient B, rather than using a single fixed stimu-
lation pattern, 4 different stimulating patterns were interleaved
together with a frequency of 10 Hz. Therefore, the stimulation
pattern was time-varying (changing every ~ 25ms), and the
4 chosen stimulation patterns would repeat every 100ms.
We will refer to these time-varying stimuli as interleaving
stimulation. Empirically well-performing stimulation was used
for each of the 4 patterns. The hypothesis was that each
stimulation pattern might compensate for a different part of
the patient’s standing (e.g. one stimulation pattern would be
optimal for right leg stability, another would be optimal for
trunk stabilization, etc...).

2) Healthy Control: Data was collected from five healthy
participants (age: 27.2+4.5 years; height: 168 £9 cm; weight:
62.3 +10.9 kg). They had no medical history of neurological
disorders. All subjects gave their written informed consent to
participate in the study, whose experimental procedures were
approved by the local ethics committee.

Each participant stood quietly with bare feet, eyes open, and
arms hanging along the sides of the body for the duration of
60 s. The participant was instructed to stand quietly and to
refrain from any voluntary movements.

EMG activity was recorded from 4 muscle groups measured
bilaterally (VL, MH, MG, SOL), using a PowerLab 16/35
series DAQ system (ADInstruments, Australia) and amplifier
Octal Bio Amp (ADInstruments, Australia). EMG signals
were differentially amplified with a band-pass filter with a
bandwidth between 10 and 2,000 Hz (-3 dB), and digitized
at a sampling frequency of 4000 Hz. To compare results with
the SCI patients, we downsampled the signal to emulate a
sampling frequency of 2000 Hz. The EMG was then lowpass
filtered at 50 Hz and then high-pass filtered at 4 Hz using a
5th order butterworth filter.

B. Extraction of Muscle Synergies

For extracting muscle synergies from healthy subjects’
EMG measurements, we utilized the NMF algorithm devel-
oped in [23]. The algorithm efficiently solves the optimization

problem in Equation (1) using alternating least squares with
multiplicative updates to find a local optimum.
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In Equation (1), EMG refers to the rectified and filtered
EMG signal — an N-by-T matrix composed of N signals (1
for each muscle) with length T. W,, 4 represents the activation
pattern of each muscle synergy where n indexes each of the
N muscles, and d indexes each of the D muscle synergies
(i.e. each column represents the muscle activation pattern for
synergy d). Hgy; represents the time-varying activating signal
for each muscle synergy where ¢ indexes each time step of the
activating signal, and d indexes each of the D muscle synergies
(i.e. each row represents the activating signal for synergy d).
This is illustrated in Fig. 1.

However, analyzing muscle synergies in SCI patients under
SCS introduces a unique challenge, which causes NMF to
work poorly in these cases. It is known that neural signals
take differing times to reach different muscles, based on the
distance these signals must travel and the finite speed of
neural signals along axons (e.g. a neural signal sent from
the spinal cord will reach the proximal muscles before distal
muscles). In healthy subjects, it is assumed that the CNS
accounts for these signal delays when processing and sending
the appropriate motor signals to different muscles. However,
in patients with SCI under spinal stimulation, an activating
signal is externally induced at a specific area of the spinal
cord at a fixed frequency. This activating signal must propagate
through the interneuronal and motorneuron pathways down the
lower limbs, resulting in measurable and diverse delays in the
EMG response at distal muscles. Therefore, extracted muscle
synergies must account for these delays, which NMF cannot
do. The implicit assumption when using NMF for muscle
synergy extraction is that each neural signal generated by the
spinal cord must reach every muscle simultaneously.

Therefore, we utilize a variant of NMF that can account for
delays, referred to as rShiftNMF (for regularized ShiftNMF).
First, the optimization problem is reformulated to include de-
lays, 7, as follows in Equation (2). An algorithm for efficiently
solving this problem is derived in [24].

minimize || EMG - Ed: WoaHai-ralls (2
By adding a delay parameter, 7, to the original optimization
problem, we can allow for delays, 7, 4, in arrival time (of
neural signal, d) at each individual muscle, n. The index (n, d)
would refer to the delay for muscle n (of N) in the d*"* muscle
synergy. These delays allow us to eliminate the assumption
that all muscles are activated simultaneously by a given
muscle synergy. The optimization problem in Equation (2) is
solved by first doing a Fourier transform on the parameters
W, H, T to conveniently express the delay as multiplication
by a complex exponential. Then we use alternating least
squares with multiplicative updates to iteratively converge on
parameter estimates. Details can be found in [24].
However, we also must ensure that the calculated delays
are consistent with neurophysiology. Since Equation 2 defines



a non-convex problem, there are many local optima we may
converge to that utilize non-physiological delays. Consider that
a generic 10Hz periodic signal would be equally likely to have
a 10ms delay and a 110ms delay. Hence, the optimization
problem above may lead to non-physiological estimates of the
delay 7, given that (1) many local optima exist and (2) many
delays 7 can lead to similarly good factorizations. However,
based on the physiology of the CNS, we can estimate the
order of magnitude of expected delays. For example, neural
signals travel down motor nerves at speeds on the order of
1007 “and the length of a lower limb is approximately
between 0.5 to 1 meters, so a signal sent from the spinal cord
should take order of magnitude 10 milliseconds longer to reach
a thigh muscle than shank muscle with variations from patient
to patient.

Given order of magnitude estimates of expected delays, we
can modify the algorithm to incorporate a prior, 7),';°", on the
delays to ensure that the delays remain consistent with physiol-
ogy. If we assume the synergy reconstruction error is gaussian
(e P(EMGW,H,7) = N WnaHat—r, ;1)) then
adding a gaussian prior with mean TP"%°" on the delay, 7, in
a Bayesian formulation of the problem is equivalent to adding
Lo regularization to the underlying optimization problem, as
shown in Equation (3) below:

minimize [|[EMG = Wy aHa—r, |3+ A7 = T77"||3.
W,H,T

d
3)

The new optimization problem can be solved by alternating
least squares as in [24], and only the update law for the
delays 7, 4 must be modified by linearly adding in the gra-
dient/Hessian corresponding to the regularization term. This
defines the rShiftNMF algorithm.

Note that since the rShiftNMF algorithm uses 10 more free
parameters per synergy (for 10 muscles) compared with NMF,
it is expected to better fit to the data. To address this, we run
the algorithm on training data to obtain proper delays 7 for
the synergies, and then cross-validate by running the algorithm
with the same fixed delay parameters, 7, on test data. Then
we can directly compare the ShiftNMF fit results with NMF,
since they utilize the same free parameters (after fixing 7).

To avoid overfitting and further cross-validate our results,
we run the rShiftNMF algorithm on training data, then fix
both the activation pattern W and delays 7, and then run the
same algorithm on test data. We do the same for the NMF
algorithm, but fix just the activation pattern W. This helps
avoid overfitting to the data — see Fig. 3. Since the underlying
EMG data is not stationary due to natural fluctuations in
the muscle activity and patient’s stance, we do not fix the
activating signal, H.

C. Estimating the Number of Muscle Synergies

Note that in the muscle synergy extraction formulation
(Equation 3), the number of muscle synergies D must be
predefined. Most work on muscle synergies utilizes the vari-
ance accounted for (VAF) metric defined below to estimate
the proper number of muscle synergies:

|EMG =8  W.4Har v o

VAF =1-
IEMG]|2

This is a measure of how well the muscle synergies recon-
struct the underlying EMG activity. In the NMF formulation,
we have 7 = 0 (no delays).

Typically the number of synergies is defined as the mini-
mum D such that VAF rises above some threshold. However,
the number of synergies will be dependent on the threshold
values used and the pre-process filtering of the EMG. Other
work has attempted to improve on these methods by cross-
validating over several trials [25], or utilizing different likeli-
hood measures and information criteria [13].

In this work, we utilize the following 2-step method to
determine the number of muscles synergies similar to the
procedure in [25]:

e Determine the number of synergies by thresholding the
slope of the VAF curve. For the threshold, we preliminar-
ily set the number of synergies once the VAF increases by
less than 0.2. This cutoff was chosen by visual inspection
of the trends in the VAF curve.

e We then validate the result by looking at the muscle acti-
vation patterns of the synergies across different intervals
of the patient’s EMG, and see if they are consistent (i.e.
the dot product between them is greater than 0.98). If they
are consistent, we accept the number of muscle synergies
to be correct. Otherwise, we lower the synergy number.

This procedure allows us to robustly identify the number
of synergies present using thresholding methods and cross-
validation.

III. RESULTS
A. Analysis of SCI Patient EMG Activity

1) Improvement in Synergy Extraction with rShiftNMF:
We extracted muscle synergies from the EMG activity of the
SCI patients using rShiftNMF as well as NMF. As discussed
in Section II-B, delays in muscle activation between muscle
groups are present in paraplegics undergoing SCS-induced
standing. These delays are illustrated in Fig. 2, where we
see that muscles further from the spinal cord follow a similar
waveform pattern as muscles closer to the spinal cord, but with
a slight (= 10ms) delay.

These delays are only accounted for in the rShiftNMF
algorithm, so we expect it to better capture low-dimensional
muscle synergy structure in the EMG activity. We confirm this
by examining the VAF of the EMG using synergies extracted
by each algorithm. This is shown in Fig. 3, and we see that
rShiftNMF is effective at capturing the EMG activity with few
muscle synergies. In fact, when cross-validating with respect
to both the activation pattern W and delay 7, a single synergy
extracted by rShiftNMF is able to account for ~ 60% of
the variance in the EMG signals, whereas NMF achieves that
reconstruction accuracy only with 2-3 synergies. The fact that
the performance of rShiftNMF remains high (and significantly
better than NMF) with cross-validation, suggests that we are
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Fig. 2: Example of delays in EMG activity between different
muscles. Note that MH and MG muscles have a similar
waveform, with MG activated slightly after MH.

able to capture meaningful structure in the EMG activity with
few muscle synergies.

One may note that the VAF observed here is lower than
values typically recorded in the literature, which is due to the
fact that we retain a much larger frequency spectrum of the
EMG signals in pre-processing (as discussed in the Section
II-A1). Thus, the important features to note are (1) improved
performance compared to NMF, and (2) consistency of VAF
after cross-validation.
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Fig. 3: The variance accounted for (VAF) plotted against the
number of synergies extracted. For each plot, the VAF with the
rShiftNMF algorithm was compared to the VAF with the NMF
algorithm. In all cases, the synergies were cross-validated with
fixed delay, 7, and activation pattern, W. (Left) Results for
patient A; (Right) Results for patient B.

To validate the results of the rShiftNMF algorithm, we note
that the algorithm’s calculated delays, 7, are consistent with
expected values based on the speed of neural signals and the
relative distance between muscles, as discussed in II-B. If the
delays, 7, were inconsistent with neurophysiology, this would
be an indicator that the rShiftNMF algorithm might be fitting
to noise in the EMG activity rather than meaningful structure
in the CNS. The delays when considering one synergy are
shown in Fig. 4.
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Fig. 4: Muscle activation delay for each muscle in the muscle
synergy (normalized to the left MH muscle).

Note that left/right muscles within each muscle group have
similar delays, and that delays increase as we go from M H to
VLtoTA/MG to SOL muscles, which reflects an ordering
based on distance from the spinal cord. We also note that
the observed delays are in line with the order of magnitude
delay expected (= 10ms) as discussed in Section II-B. The
consistency of the delays with physiological models is fur-
ther evidence that rShiftNMF muscle synergies are capturing
physiological phenomena that would be missed with muscle
synergies extracted by NMF. NMF muscle synergies would
necessarily treat distant muscle groups (e.g. MH and SOL)
as part of different synergies because their relative delays
make them seem to arise from different neural signals. Muscle
synergies extracted by rShiftNMF can better identify co-
activated groups of muscles that may be physically distant.

As further validation, we note that for patient A, muscle
synergy features extracted by rShiftNMF are more strongly
correlated with functional performance (standing ability) than
muscle synergy features extracted by NMF. Note that we did
not repeat the analysis with patient B due to the smaller
number of trials and lower variance in standing scores. Fig.
5(a) shows prediction accuracy based on linear regression with
EMG power and rShiftNMF muscle synergy features. Using
these features to estimate patient standing scores, we found
that 74% of the estimates were within £1 of the true score,
and 97% were within 2 of the true score. In comparison,
if we did not include the muscle synergy features, only 59%
of the estimates were within +1 of the true score, and 91%
were within +2 of the true score. Thus adding rShiftNMF
muscle synergy features leads to significant improvements in
prediction accuracy, suggesting that these synergies capture
some meaningful structure that correlate with motor activity.
Fig. 5 (b) compares score classification accuracy — independent
standing (score > 6) vs. non-independent standing — using
synergy features from either NMF or rShiftNMF and 3-fold
cross-validation. The results indicate stronger correlation with
rShiftNMF muscle synergy features. This result, combined
with the accurate modeling of physiological delays and signifi-
cantly improved EMG reconstruction, suggests that rShiftNMF
provides a more useful and physiological description of muscle
synergies for SCI patients.
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Regularized
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Prediction
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Fig. 5: (a) Accuracy in standing score prediction using linear
regression with ShiftNMF muscle synergy features and raw
EMG power. (b) Standing score prediction performance based
on muscle synergy features only, using scoring scale between
1-10. First and second columns show mean absolute error in
score prediction, whereas the third column shows percentage
of trials correctly predicted within +2 of true score.

2) Number of Muscle Synergies: Utilizing the methodology
described in section II-C, we calculated the number of syn-
ergies present in each stimulation trial. For 96% of the trials,
we found that only one muscle synergy was activated during
patient standing under SCS.

However, for 4 of the 109 trials for patient A and 1 of the
15 trials for patient B, we found two distinct and consistent
muscle synergies were active during patient standing under
SCS. We found that these trials where 2 synergies were
active also corresponded to the highest performance trials and
occurred when (and only when) the patient was stimulated
with multiple interleaving stimulation patterns (as described in
section II-A1) rather than a single fixed stimulation pattern. We
will argue that the interleaving stimulation achieves selective
spinal circuit activation (SSCA) of a second spinal circuit (i.e.
muscle synergy), and in this paper, we will refer to the trials
with 2 synergies as SSCA trials.

B. Activation of Additional Synergy with SCS

In this section, we confirm that there is indeed a second
distinct muscle synergy that is activated in the SSCA trials
due to spinal stimulation, and we explore its characteristics
and importance to functional SCS-based standing.

First, we show that for the SSCA trials, the activation
pattern, W, is distinct for the two muscle synergies — the first
is the same muscle synergy common to all the non-SSCA
trials, and the second muscle synergy is distinct from the

first in activation pattern. Fig. 6 compares the mean activation
pattern for the muscle synergy from non-SSCA trials, to
the activation pattern of the two muscle synergies from the
SSCA trials. We find that the first muscle synergy from the
SSCA trials aligns with the muscle synergy extracted from
the non-SSCA trials (with respect to the activation pattern W)
— mainly activating the lower leg muscles (MG and SOL).
The second synergy primarily activates the VL muscle group,
showing a distinct pattern from synergy 1. We can think
of this second synergy as activating a second neural circuit
responsible for a complementary set of muscles. Therefore,
the first synergy primarily activates the lower leg muscles,
while the second muscle synergy primarily activates the upper
leg/thigh muscles.

We tested the statistical significance of this hypothesis
using a permutation test based on minimum statistical energy
developed in [26]. We calculated the p-value corresponding
to the hypothesis that the first synergy activation pattern from
the SSCA trials matches the synergy activation pattern from
the non-SSCA trials, and found that p > 0.2 (p = 0.21 for
patient A session 1, p = 0.20 for patient A session 2, and
p = 0.47 for patient B). We cannot reject the hypothesis
that the activation patterns come from the same distribution,
even at the 20% confidence level. However, if we consider the
second muscle synergy from the SSCA trials, we can reject
the hypothesis that it comes from the same distribution as the
muscle synergy of the non-SSCA trials at the 5% confidence
level (p = 0.003 for patient A session 1, p = 0.001 for patient
A session 2, and p = 0.05 for patient B). These results suggest
that the interleaving stimulation introduces a distinct second
muscle synergy during patient standing, while also activating
the original muscle synergy.

Surprisingly, the activation pattern for both synergies is
quite similar for both patients as seen in Fig. 6. While the
small sample size prevents us from making strong claims,
one hypothesis is that these muscle synergy activation patterns
reflect efficient activation patterns that arose from the patients’
stand training after SCI. This hypothesis is discussed further
in Section III-C3.

Note that we have omitted the MH muscles in Fig. 6 and
the permutation test, because it is activated significantly by
both synergy 1 and synergy 2 in the SSCA trials; this overlap
means that MH activity can often equivalently be attributed to
either synergy 1 or synergy 2, and often changes across runs
of the algorithm. Therefore, it is difficult for the algorithm to
confidently attribute it to one synergy or the other.

The introduction of the second muscle synergy (activating
the VL muscles) increases the complexity of the muscle activ-
ity, requiring the composition of 2 neural commands instead
of 1. Fig. 7 illustrates this increased complexity through an
additional muscle synergy. In the SSCA trials, the 2"¢ synergy
introduces a significant (in amplitude) and different “basis
signal”, which allows the spinal cord to generate richer muscle
activity. In contrast, for the non-SSCA trials, if we attempt
to extract two synergies by the rShiftNMF algorithm, the 27¢
synergy barely contributes to the muscle activity as seen in the
bottom plots of Fig. 7 and its waveform significantly mirrors
the 1°¢ synergy, essentially becoming a redundant synergy.
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Fig. 6: Comparison of mean activation pattern for non-SSCA
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This is also reflected by the smaller increase in VAF seen in
the non-SSCA trials from adding a second synergy.

If we compare the relative EMG power from each muscle
for the SSCA vs. non-SSCA trials, as shown in Fig. 8, we see
that the only significant difference between the two is in the
activation of the VL muscle. This provides further verification
that the difference in muscle activity in the SSCA trials is due
to the excitation of a second muscle synergy that is responsible
for significant VL muscle activation.

It is important to note that the therapist-rated standing scores
were highest for the SSCA trials (the score was > 8.75 for all
SSCA trials). Therefore, proper spinal stimulation can activate
a 2"? muscle synergy (corresponding to a separate neural
circuit), which is critical to independent standing in stimulated
SCI patients and results in more complex muscle activity.

1) Spinal Activation Mapping: Next, we mapped the EMG
activity for each muscle synergy to regions of the spinal cord
for both patients. We obtained a mapping of muscles to spinal
cord segments based on charts collected in Kandel [27], and
calculated the resulting activation of each spinal segment from
each muscle synergy. As we did above, we exclude the MH
muscle in the visualization due to the ambiguity in attributing

Synergy Signals for SSC and Non-SSCA Trials
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Fig. 7: Representative illustration of synergy activation wave-
form, H, for SSCA trials vs. non-SSCA trials. Note that in
SSCA trials (left plot), the synergy 2 activation waveform
plays a significant role in composing EMG activity. In non-
SSCA trials (right plot), adding a second synergy results in an
activation waveform that is similar to the synergy 1 activation
waveform with much smaller amplitude — thus not playing an
important role in composing EMG activity.
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Fig. 8: Relative EMG power of different muscles during
patient standing under SCS for SSCA vs. non-SSCA trials.
Data from patients A and B were combined.

it to synergy 1 or 2. Fig. 9a shows the approximate mapping of
the muscle synergies to the spinal cord for the non-SSCA trials
and SSCA trials for both patients. We see that the first synergy
for the SSCA trials and only synergy for the non-SSCA trials
maps to the lower lumbo-sacral spinal cord region (== L5-S2),
whereas the second synergy for the SSCA trials maps to the
upper lumbo-sacral spinal cord (=~ L2-L4).

Thus we can interpret the effect of the interleaving spinal
stimulation (for the SSCA trials), as activating a separate,
previously untapped neural circuit which modulates motor
pools in the upper lumbo-sacral spinal cord. Note that the
muscle activity generated by these muscle synergies depend
both on the spinal stimulation and the patient’s peripheral
sensory input. The muscle synergies are visualized in Fig.
9b, where we see the 2"? synergy activates motor pools
in a higher region of the spinal cord, which is critical to
natural standing. This knowledge can enhance SCI therapies
by localizing important muscle synergies like the ones in Fig.
9, and helping to activate and train them to improve functional
performance and rehabilitation.
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Fig. 9: (a) Visualization of activation of spinal cord regions re-
sulting from each muscle synergy’s activation. The left region
represents spinal activation of the muscle synergy from non-
SSCA trials. The middle region represents spinal activation of
the first muscle synergy from the SSCA trials, whereas the
right region represents spinal activation of the second muscle
synergy from the SSCA trials. The top plot shows results for
patient A, and bottom plot shows results for patient B.

(b) Visualization of approximate spinal cord regions activated
by each muscle synergy for SSCA trials (on the right) and
non-SSCA trials (on the left).

C. Analysis of Uninjured Human EMG Activity

1) Muscle Synergy Extraction: We now look at EMG
activity from five healthy subjects during standing, and utilize
NMF and rShiftNMF to look for muscle synergy structure.
From Fig. 10 we see that a single cross-validated muscle

synergy can reconstruct more than 50% of EMG activity.
However, we note that rShiftNMF performs slightly worse than
standard NMF under cross-validation, especially as we add
more synergies. Therefore, it seems that rShiftNMF overfits
to the delay parameters, and the incorporation of delays in the
muscle synergies is not necessary or desirable when extracting
muscle synergies from healthy subjects. We hypothesize that
the absence of signal delays in healthy subjects’ muscle
synergies is due to the CNS’s ability to account for muscle
activation delays, as discussed in section II-B. We conclude
that NMF provides a better, simpler-to-implement algorithm
for extracting muscle synergies in healthy patients.

'l.':ross-VaIidated VAF vs. Number of Synergies
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Fig. 10: The variance accounted for (VAF) plotted against the
number of synergies extracted for healthy subjects and SCI
patients. The mean VAF across all trials for a given synergy
number was used for each data point. Synergies were cross-
validated with fixed delay, 7, and activation pattern, W. Note
that in order to directly compare SCI and healthy subjects, we
ran the rShiftNMF algorithm on only the subset of 8 muscles
measured from all subjects.

2) Comparison of Healthy EMG and SCI EMG activity:

Based on our prior methodology, we calculate that a single
muscle synergy is activated during quiet standing in all healthy
subjects. However, we also note that the VAF captured by a
single muscle synergy in healthy subjects is smaller than the
VAF captured by a single muscle synergy in the SCI patient
(see Fig. 10), even though we apply a more aggressive filter
to the healthy subjects’ EMG data. When we calculate the
number of synergies, the VAF does not increase significantly
after 1 synergy and the muscle activation patterns are not
consistent if we add more than 1 synergy. This indicates that
while healthy subjects exhibit the same or fewer number of
muscle synergies during standing, there is a separate control
mechanism that is not active in SCI patients, which contributes
to the complexity in healthy EMG activity during standing.

This phenomenon suggests that healthy subjects’ muscle
activity is “richer” and more complex, and may arise due
to supraspinal input enabling healthy subjects to generate
nonlinear combinations of motor units that cannot be generated
by muscle synergies (which represent muscle activity as linear
combinations of motor units). Another hypothesis is that
supraspinal input allows the healthy subjects to precisely con-
trol a wider variety of interneuronal networks that participate
in the control of posture, or that important sensory feedback



circuits for standing rely on descending pathways not available
to SCI patients.

Nevertheless, SCI patients’ muscle activity has less com-
plexity and can be more easily captured in low dimension,
which can be seen from the EMG activity shown in Fig.
11. Qualitatively, the healthy subjects’ EMG activity is more
varied and exhibits a spectrum of frequencies in the signal
waveform, whereas the SCI patients’ EMG activity is very
regular, periodic, and synchronized to the SCS stimulating
frequency. Thus activation of the second muscle synergy for
SCI patients may serve as a compensatory mechanism to
increase motor complexity necessary for improving functional
performance.
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Fig. 11: (Left) Representative EMG activity for SOL and
MH muscles for healthy subject; (Right) Representative EMG
activity for SOL and MH muscles for SCI patient under SCS.

3) Biomechanics of Healthy Standing versus SCI Standing:
Note that the muscle synergy activation pattern, W, is similar
for both SCI patients (in both SSCA and non-SSCA trials),
even though the activation pattern, W, for the healthy subjects
is highly variable, as shown in Fig. 12. More interestingly
though, the muscle synergy activation pattern for the SSCA
trials for both patients is consistent with principles for max-
imally efficient (minimum required torque) stable standing.
The authors in [28] found that maximally efficient stable
standing should utilize 2 muscles for knee flexion/extension, 2
muscles for ankle dorsiflexion/plantarflexion, 1 muscle for hip
abduction/adduction, and 1 muscle for hip flexion/extension.
This is consistent with the SSCA trials, where VL/MH serve
as two muscles for knee flexion/extension and MG/SOL
serve as two muscles for ankle dorsiflexion/plantarflexion, and
TA is not active (no EMG measurements for hip muscles).
Furthermore, [29] found that TA muscle activity in healthy
elderly individuals surprisingly decreases postural steadiness
in standing, which is consistent with the SCI patients under
SCS exhibiting no TA activation. On the other hand, the
muscle synergy activation patterns for healthy subjects, seen
in Fig. 12, are highly varied and are not consistent with the
principles for maximally efficient stable standing.

These results, combined with our findings, allow us to
hypothesize that stimulated SCI patients attempt to achieve
maximally efficient stable standing, whereas healthy subjects
utilize a different strategy for standing. In the SSCA trials,
SCI standing activates muscle patterns that are maximally
efficient for stable standing, and activation of the second
muscle synergy is crucial to activate the two necessary muscles
for knee flexion/extension. However, in the non-SSCA trials,
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Fig. 12: Muscle synergy activation pattern, W, for healthy
subjects (single synergy).

stable standing is not as well achieved because the absence
of the second synergy leads to only one of the two necessary
muscles for knee flexion/extension being active.

Due to the limited number of muscles we measured from
(e.g. no hip muscles) and limited sample size, we cannot make
a strong general statement about the biomechanics arising
from muscle synergy activation. However, the consistency of
our results (for both patients examined) with prior literature
on efficient stable standing suggests our hypothesis is worth
further exploration.

IV. DISCUSSION
A. Commentary on additional synergy

We have seen that spinal stimulation with specific charac-
teristics during SCI patient standing can lead to activation of
an additional neural circuit (i.e. a second muscle synergy),
which significantly improves patient standing ability. The
effect of the two muscle synergies then linearly combine to
generate the patient’s muscle activity. This is reminiscent of
the frog experiments described in Section I, where stimulation
at different sites of the frog’s spinal cord led to activation
of muscle synergies, and co-activation of those sites often
led to a linear combination of those muscle synergies in the
resulting muscle activity. While other studies have relied on
post-processing EMG activity to look for muscle synergies in
human EMG data, the fact that we are able to mirror the syn-
ergy phenomenon in [1], [3]-[5] with humans (selectively ac-
tivate and linearly combine multiple muscle synergies through
spinal stimulation) provides substantial direct evidence of the
existence of muscle synergies in the human spinal cord and
their survival after SCI.

Furthermore, studies have hypothesized that neurological
injury/disease leads to a decrease in the number of muscle
synergies activated when composing overall muscle activity
[2], [12], [14], [15]. These prior efforts suggested that muscle
synergies may have been “destroyed” or “merged” after injury.
However, the fact that proper stimulation was able to activate
an additional muscle synergy suggests that muscle synergies
are still encoded in the spinal cord and remain intact after
neurological injury. Moreover, these muscle synergies were
consistent across both observed patients. Hence, we hypoth-
esize that spinal injury impairs the ability of the CNS to



properly activate muscle synergies, even though those neural
circuits remain intact in the spinal cord and can be activated by
SCS. This is consistent with the conclusions in [2] that after
stroke, the brain loses its ability to accurately and distinctly
activate separate muscle synergies, making synergies seem
“merged”.

The ability to accurately and distinctly activate important
muscle synergies is critical to proper functional performance,
as was seen in this study. It seems that healthy subjects only
partially rely on muscle synergies to compose their muscle
activity, with supraspinal input contributing significantly to the
complexity of their EMG, whereas SCI patients rely more
heavily on muscle synergies which compose the majority
of their motor activity. The activation of additional muscle
synergies may then serve as a compensatory mechanism for
SCI patients to add motor complexity and more effectively
achieve stable postural control.

1) Note on Interleaving Stimulation: We saw that inter-
leaving spinal stimulation patterns (i.e. time-varying stimuli)
activated a second muscle synergy, whereas a single fixed
pattern of spinal stimulation did not achieve this (even in the
best case). Originally, the hypothesis for using interleaving
stimulation was that each interleaved stimulation pattern would
compensate for a different part of the patient’s performance
(i.e. one stimulation pattern would be optimal for right leg
stability, another would be optimal for trunk stabilization,
etc...). However, we saw that interleaving stimulation actually
allowed us to activate an additional muscle synergy, leading
to the significant improvements in functional performance.
Interleaving stimulation thus can enable activation of multiple
synergies, but how it does this is an open question. Learning
the mechanism by which this occurs will be important in en-
abling us to selectively search for and activate other synergies.
It is clear though that optimal SCS will require time-varying
stimuli to enable optimal functional performance.

B. Commentary on extraction of muscle synergies.

It is clear from the delays present that NMF cannot effec-
tively be used to identify muscle synergies in SCI patients
under spinal stimulation. Thus rShiftNMF should be used
in these cases, where we can identify, and compensate for,
the delays in muscle activation due to spinal stimulation.
Regularization can be used to ensure that we obtain physi-
ological delays, consistent with our knowledge of the CNS. In
cases not involving spinal stimulation (i.e. in healthy subjects),
NMF remains an effective matrix factorization algorithm for
extracting muscle synergies from EMG data.

V. CONCLUSION

This is the first human study analyzing muscle synergies
in SCI patients under SCS, and comparing them with healthy
subjects, and our results shed light on muscle synergies as
a key physiological mechanism by which SCS generates
motor function. We described a new algorithm to extract
muscle synergies from SCI patients under multi-electrode
spinal stimulation, and we provided evidence that different
muscle synergies are not only encoded in the human spinal

cord, but can be selectively activated through SCS. Patient
motor function is heavily influenced through activation of
these muscle synergies, and SCI standing ability can be greatly
improved through activation of an additional muscle synergy.
Furthermore, we have compared the role of muscle synergies
in SCI patients to their role in healthy subjects, and shown
that SCI patients rely more heavily on muscle synergies for
generating motor activity.

We believe these results will have significant implications
for rehabilitation as we better learn how to activate and
train critical muscle synergies through spinal stimulation and
motor training. A recent animal study suggested that targeted
neuromodulation of muscle synergies in SCI rats could provide
significant improvements in motor control [30]. Our work
provides a next step towards extending this idea to humans,
and could open up new possibilities for SCI therapies.
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