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Abstract

Reinforcement Learning (RL) algorithms have found limited
success beyond simulated applications, and one main reason
is the absence of safety guarantees during the learning pro-
cess. Real world systems would realistically fail or break be-
fore an optimal controller can be learned. To address this is-
sue, we propose a controller architecture that combines (1)
a model-free RL-based controller with (2) model-based con-
trollers utilizing control barrier functions (CBFs) and (3) on-
line learning of the unknown system dynamics, in order to
ensure safety during learning. Our general framework lever-
ages the success of RL algorithms to learn high-performance
controllers, while the CBF-based controllers both guarantee
safety and guide the learning process by constraining the set
of explorable polices. We utilize Gaussian Processes (GPs) to
model the system dynamics and its uncertainties.
Our novel controller synthesis algorithm, RL-CBF, guaran-
tees safety with high probability during the learning process,
regardless of the RL algorithm used, and demonstrates greater
policy exploration efficiency. We test our algorithm on (1)
control of an inverted pendulum and (2) autonomous car-
following with wireless vehicle-to-vehicle communication,
and show that our algorithm attains much greater sample ef-
ficiency in learning than other state-of-the-art algorithms and
maintains safety during the entire learning process.

Introduction
Reinforcement learning (RL) focuses on finding an agent’s
policy (i.e. controller) that maximizes a long-term reward.
It does this by repeatedly observing the agent’s state, tak-
ing an action (according to a current policy), and receiving
a reward. Over time, the agent modifies its policy to max-
imize its long-term reward. This method has been success-
fully applied to continuous control tasks (Duan et al. 2016;
Lillicrap et al. 2015) where controllers have learned to sta-
bilize complex robots (after many policy iterations).

However, since RL focuses on maximizing the long-term
reward, it is likely to explore unsafe behaviors during the
learning process. This feature is problematic for any RL al-
gorithm that will be deployed on hardware, as unsafe learn-
ing policies could damage the hardware or bring harm to a
human. As a result, most success in the use of RL for control
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of physical systems has been limited to simulations, where
many failed iterations can occur before success.

Safe RL tries to learn a policy that maximizes the ex-
pected return, while also ensuring (or encouraging) the sat-
isfaction of some safety constraints (Garcı́a and Fernández
2015). Previous approaches to safe reinforcement learn-
ing include reward-shaping, policy optimization with con-
straints (Gaskett 2003; Moldovan and Abbeel 2012; Achiam
et al. 2017; Wachi et al. 2018), or teacher advice (Abbeel
and Ng 2004; Abbeel, Coates, and Ng 2010; Tang et al.
2010). However, these model-free approaches do not guar-
antee safety during learning – safety is only approximately
guaranteed after a sufficient learning period. The fundamen-
tal issue is that without a model, safety must be learned
through environmental interactions, which means it may be
violated during initial learning interactions.

Model-based approaches have utilized Lyapunov-based
methods or model predictive control to guarantee safety un-
der system dynamics during learning (Wang, Theodorou,
and Egerstedt 2017; Berkenkamp et al. 2017; Chow et al.
2018; Ohnishi et al. 2018; Koller et al. 2018), but they do not
address the issue of exploration and performance optimiza-
tion. Other works guarantee safety by switching between
backup controllers (Perkins and Barto 2003; Mannucci et al.
2018), though this overly constrains policy exploration.

We draw inspiration from recent work that has incorpo-
rated model information into model-free RL algorithms to
ensure safety during exploration (Fisac et al. 2018; Li, Kal-
abic, and Chu 2018; Gillula and Tomlin 2012). However,
these approaches utilize backup safety controllers that do not
guide the learning process (limiting exploration efficiency).

This paper develops a framework for integrating exist-
ing model-free RL algorithms with control barrier functions
(CBFs) to guarantee safety and improve exploration effi-
ciency in RL, even with uncertain model information. The
CBFs require a (potentially poor) nominal dynamics model,
but can ensure online safety of nonlinear systems during the
entire learning process and help the RL algorithm efficiently
search the policy space. This methodology effectively con-
strains the policy exploration process to a set of safe po-
lices defined by the CBF. An on-line process learns the gov-
erning dynamical system over time, which allows the CBF
controller to adapt and become less conservative over time.
This general framework allows us to utilize any model-free



RL algorithm to learn a controller, with the CBF controller
guiding policy exploration and ensuring safety.

Using this framework, we develop an efficient algorithm
for controller synthesis, RL-CBF, with guarantees on safety
(remaining within a safe set) and performance (reward-
maximization). To test this approach, we integrated two
model-free RL algorithms – trust region policy optimization
(TRPO) (Schulman et al. 2015) and deep deterministic pol-
icy gradients (DDPG) (Lillicrap et al. 2015) – with the CBF
controllers and dynamical model learning. We tested the al-
gorithms on two nonlinear control problems: (1) balancing
of an inverted pendulum, and (2) autonomous car following
with wireless vehicle-to-vehicle communication. For both
tasks, our algorithm efficiently learned a high-performance
controller while maintaining safety throughout the learning
process. Furthermore, it learned faster than comparable RL
algorithms due to inclusion of a model learning process,
which constrains the space of explorable policies and guides
the exploration process.

Our main contributions are: (1) we develop the first al-
gorithm that integrates CBF-based controllers with model-
free RL to achieve end-to-end safe RL for nonlinear control
systems, and (2) we show improved learning efficiency by
guiding the policy exploration with barrier functions.

Preliminaries
Consider an infinite-horizon discounted Markov decision
process (MDP) with control-affine, deterministic dynamics
(a good assumption when dealing with robotic systems), de-
fined by the tuple (S,A, f, g, d, r, ρ0, γ), where S is a set of
states, A is a set of actions, f : S → S is the nominal un-
actuated dynamics, g : S → Rn,m is the nominal actuated
dynamics, and d : S → S is the unknown system dynamics.
The time evolution of the system is given by

st+1 = f(st) + g(st)at + d(st), (1)

where st ∈ S, at ∈ A, f and g compose a known nom-
inal model of the dynamics, and d represents the unknown
model. In practice, the nominal model may be quite bad (e.g.
a robot model that ignores friction and compliance), and we
must learn a much better dynamic model through data.

Furthermore r : S × A → R is the reward function, ρ0 :
S → R is the distribution of the initial state s0, and γ ∈
(0, 1) is the discount factor.

Reinforcement Learning
Let π(a|s) denote a stochastic control policy π : S × A →
[0, 1] that maps states to distributions over actions, and let
J(π) denote the policy’s expected discounted reward:

J(π) = Eτ∼π[
∞∑
t=0

γtr(st)]. (2)

Here τ ∼ π is a trajectory τ = {st, at, ..., st+n, at+n}
where the actions are sampled from policy π(a|s). We use
the standard definitions for the value function Vπ , action-

value function Qπ , and advantage function, Aπ below:

Qπ(st, at) = Est+1,at+1,...

[ ∞∑
l=0

γlr(st+l, at+l)
]
,

Vπ(st) = Eat,st+1,at+1,...

[ ∞∑
l=0

γlr(st+l, at+l)
]
,

Aπ(st, at) = Qπ(st, at)− Vπ(st), (3)

where actions ai are drawn from distribution ai ∼ π(a|si).
Most policy optimization RL algorithms attempt to maxi-

mize long-term reward J(π) using (a) policy iteration meth-
ods (Bertsekas 2005), (b) derivative-free optimization meth-
ods that optimize the return as a function of policy param-
eters (Fu, Glover, and April 2005), or (c) policy gradient
methods (Peters and Schaal 2008; Silver et al. 2014). Any of
these methods can be rendered end-to-end safe using the RL-
CBF control framework proposed in this work. However, we
will focus mainly on policy gradient methods, due to their
good performance on continuous control problems.

Policy Gradient-Based RL Policy gradient methods esti-
mate the gradient of the expected return J(π) with respect
to the policy based on sampled trajectories. They then op-
timize the policy using gradient ascent, allowing modifica-
tion of the control law at episodic intervals. The DDPG and
TRPO algorithms are examples of policy gradient methods,
which we will use as benchmarks.

DDPG is an off-policy actor-critic method that computes
the policy gradient based on sampled trajectories and an es-
timate of the action-value function. It alternately updates the
action-value function and the policy as it samples more and
more trajectories.

TRPO is an on-policy policy gradient method that maxi-
mizes a surrogate loss function, which serves as an approx-
imate lower bound on the true loss function. It also ensures
that the next policy distribution is within a “trust region”.
More precisely, it approximates the optimal policy update
by iteratively solving the optimization problem:

πi+1 = argmax
π

∑
s

ρπi
(s)
∑
a

π(a|s)Aπi
(s, a) (4)

such that the Kullback-Leibler divergence
DKL(πi, πi+1) ≤ δp. Here ρπi

(s) represents the dis-
counted visitation frequency of state s under policy πi, and
δp is a constant defining the “trust region”.

Though both DDPG and TRPO have learned good con-
trollers on several benchmark problems, there is no guar-
antee of safety in these algorithms, nor any other model-
free RL algorithm. Therefore, our objective is to comple-
ment model-free RL controllers with model-based CBF con-
trollers (using a potentially poor nominal model), which can
both improve search efficiency and ensure safety.

Gaussian Processes
We use Gaussian process (GP) models to estimate the un-
known system dynamics, d(s), from data. A Gaussian pro-
cess is a nonparametric regression method for estimating



functions and their uncertain distribution from data (Ras-
mussen and Williams 2006). It describes the evolving model
of the uncertain dynamics, d(s), by a mean estimate, µd(s),
and the uncertainty, σ2

d(s), which allows for high probability
confidence intervals on the function:

µd(s)− kδσd(s) ≤ d(s) ≤ µd(s) + kδσd(s), (5)

with probability (1− δ) where kδ is a design parameter that
determines δ (e.g. 95% confidence is achieved at kδ = 2).
Therefore, by learning µd(s) and σd(s) in tandem with the
controller, we obtain high probability confidence intervals
on the unknown dynamics, which adapt/shrink as we obtain
more information (i.e. measurements) on the system.

A GP model is parameterized by a kernel function
k(s, s′), which defines the similarity between any two states
s, s′ ∈ S. In order to make inferences on the unknown
function d(s), we need measurements, d̂(s), which are com-
puted from measurements of (st, at, st+1) using the rela-
tion from Equation (1): d̂(st) = st+1 − f(st) − g(st)at.
Since any finite number of data points form a multivari-
ate normal distribution, we can obtain the posterior dis-
tribution of d(s∗) at any query state s∗ ∈ S by condi-
tioning on the past measurements. Given n measurements
yn = [d̂(s1), d̂(s2), ..., d̂(sn)] subject to independent Gaus-
sian noise νnoise ∼ N (0, σ2

noise), the mean µd(s∗) and vari-
ance σ2

d(s∗) at the query state, s∗, are calculated to be,

µd(s∗) = kT∗ (s∗)(K + σ2
noiseI)

−1yn,

σ2
d(s∗) = k(s∗, s∗)− kT∗ (s∗)(K + σ2

noiseI)
−1k∗(s∗),

(6)

where Ki,j = k(si, sj) is the kernel matrix, and k∗ =
[k(s1, s∗), k(s2, s∗), ..., k(sn, s∗)]. As we collect more data,
µd(s) becomes a better estimate of d(s), and the uncertainty,
σ2
d(s), of the dynamics decreases.
We note that in applications with large amounts of data,

training the GP becomes problematic since computing the
matrix inverse in Equation (6) scales poorly (N3 in the
number of data points). There are several methods to al-
leviate this issue, such as using sparse inducing inputs or
local GPs (Snelson and Ghahramani 2007; Nguyen-Tuong,
Seeger, and Peters 2009). In fact, our framework can use any
model approximation method that provides quantifiable un-
certainty bounds (e.g. neural networks with dropout). How-
ever, we bypass this issue in this work by batch training the
GP model with only the latest batch of ≈ 1000 data points.

Control Barrier Functions
Consider an arbitrary safe set, C, defined by the super-level
set of a continuously differentiable function h : Rn → R,

C : {s ∈ Rn : h(s) ≥ 0}. (7)

To maintain safety during the learning process, the system
state must always remain within the safe set C (i.e. the set C
is forward invariant). Examples include keeping a manipu-
lator within a given workspace, or ensuring that a quadcopter
avoids obstacles. Essentially, the learning algorithm should
learn/explore only in set C.

Control barrier functions utilize a Lyapunov-like argu-
ment to provide a sufficient condition for ensuring for-
ward invariance of the safe set C under controlled dynam-
ics. Therefore, barrier functions are a natural tool to enforce
safety throughout the learning process, and can be used to
synthesize safe controllers for our systems.
Definition 1. Given a set C ∈ Rn defined by (7), the contin-
uously differentiable function h : Rn → R is a discrete-time
control barrier function (CBF) for dynamical system (1) if
there exists η ∈ [0, 1] such that for all st ∈ C,

sup
at∈A

[
h
(
f(st) + g(st)at + d(st)

)
+ (η − 1)h(st)

]
≥ 0,

(8)

where η represents how strongly the barrier function
“pushes” the state inwards within the safe set (if η = 0,
the barrier condition simplifies to the Lyapunov condition).

The existence of a CBF implies that there exists a deter-
ministic controller uCBF : S → A such that the set C is for-
ward invariant for system (1) (Agrawal and Sreenath 2017;
Ames et al. 2017). In other words, if condition (8) is sat-
isfied for all s ∈ C, then the set C is rendered forward in-
variant. Our goal is to find a controller, uCBF , that satisfies
condition (8), so that safety is certified.

For this paper, we restrict our attention to affine barrier
functions of form h = pT s+q, (p ∈ Rn, q ∈ R), though our
methodology could support more general barrier functions.
This restriction means the set C is composed of intersecting
half spaces (i.e. polytopes).

Before we can formulate a tractable optimization prob-
lem that satisfies condition (8), we must have an estimate for
d(s). We use an updating GP model to estimate the mean and
variance of the function, µd(s) and σ2

d(s), from measure-
ment data. From equation (5), we know that |µd(s)−d(s)| ≤
kδσd(s) with probability (1 − δ). Therefore, we can refor-
mulate the CBF condition (8) into the following quadratic
program (QP) that can be efficiently solved at each time step:

(at, ε) = argmin
at,ε

‖at‖2 +Kεε

s.t. pT f(st) + pT g(st)at + pTµd(st)−
kδ|p|Tσd(st) + q ≥ (1− η)h(st)− ε
ailow ≤ ait ≤ aihigh for i = 1, ...,M

(9)
where ε is a slack variable in the safety condition, Kε is a
large constant that penalizes safety violations, and |p| de-
notes the element-wise absolute value of the vector p. The
optimization is not sensitive to theKε parameter as long as it
is very large (e.g. 1012), such that safety constraint violations
are heavily penalized. The last constraint on ait encodes ac-
tuator constraints. The solution to this optimization problem
(9) enforces the safety condition (8) as best as possible with
minimum control effort, even with uncertain dynamics. Ac-
counting for the dynamics uncertainty through GP models
allows us to certify system safety, even with a poor nominal
model.



Let us define the set Cε : {s ∈ Rn : h(s) ≥ − ε
η}. Then

we can prove the following lemma.
Lemma 1. For dynamical system (1), if there exists a so-
lution to (9) for all s ∈ C with ε = 0, then the controller
derived from (9) renders set C forward invariant with prob-
ability (1− δ).

However, suppose there exists s ∈ C such that (9) has
solution with ε = εmax > 0. If for all s ∈ Cε, the solution
to (9) satisfies ε ≤ εmax, then the larger set Cε is forward
invariant with probability (1− δ).

Proof. The first part of the lemma follows directly from
Definition 1 and the probabilistic bounds on the uncertainty
obtained from GPs shown in equation (5).

For the second part, the property of GPs in equation (5)
implies that with probability (1−δ), the following inequality
is satisfied under the system dynamics (1):

h(st+1) ≥ pT
(
f(st) + g(st)at + µd(st)

)
−

kδ|p|Tσd(st) + q.
(10)

Therefore, the constraint in problem (9) ensures that:

h(st+1) ≥ (1− η)h(st)− ε,
pT st+1 + q ≥ (1− η)(pT st + q)− ε,

pT st+1 + q +
ε

η
≥ (1− η)(pT st + q +

ε

η
).

(11)

Define hε(s) = q + ε
η + pT s, so that (11) simplifies to

hε(st+1) ≥ (1− η)hε(st). (12)

By Definition 1, the set Cε defined by hε(s) = h(s)+ ε
η ≥

0 is forward invariant under system dynamics (1).

The CBF controllers that solve (9) provide determin-
istic control laws, uCBF (s) that naturally encode safety;
they provide the minimal control intervention that maintains
safety or provide graceful degradation (a small deviation
from the safe set) when safety cannot be enforced (e.g. due
to actuation constraints). Furthermore, even with dynamics
uncertainty, we can make high-probability statements about
system safety using GP models with CBFs.

Note that one can easily combine multiple CBF con-
straints in problem (9) to define polytopic safe regions.

CBF-Based Compensating Control with
Reinforcement Learning

To illustrate our framework, we first propose the suboptimal
controller in equation (13), which combines a model-free
RL-based controller (parameterized by θk) and a CBF-based
controller in the architecture shown in Figure 1a.

uk(s) = uRLθk (s) + uCBFk (s, uRLθk ). (13)

The concept is akin to shielded RL (Alshiekh et al. 2017;
Fisac et al. 2018), since the CBF controller compensates for
the RL controller to ensure safety, but does not guide explo-
ration of the RL algorithm. The next section will extend the
CBF controller to improve RL policy exploration.

Note that since the RL policy πRLθk (a|s) is stochastic (see
Preliminaries section on RL), the controller uRLθk (s) rep-
resents the realization (i.e. sampled control action) of the
stochastic policy πRLθk (a|s) after policy iteration k.

(a)

(b)

Figure 1: Control architecture combining model-free RL
controller with model-based CBF to guarantee safety. (a)
Initial architecture that uses CBF to compensate for unsafe
control actions, but does not guide learning and exploration.
(b) Architecture that uses CBF to guide exploration and
learning, as well as ensure safety.

The model-free RL controller, uRLθk (s) proposes a con-
trol action that attempts to optimize long-term reward, but
may be unsafe. Before deploying the RL controller, a CBF
controller uCBFk (s, uRLθk ) filters the proposed control action
and provides the minimum control intervention needed to
ensure that the overall controller, uk(s), keeps the system
state within the safe set. Essentially, the CBF controller,
uCBFk (s, uRLθk ) “projects” the RL controller uRLθk (s) into the
set of safe policies. In the case of an autonomous car, this
action may enforce a safe distance between nearby cars, re-
gardless of the action proposed by the RL controller.

The CBF controller uCBFk (s, uRLθk ), which depends on the
RL control, is defined by the following QP that can be effi-
ciently solved at each time step:

(at, ε) = argmin
at,ε

‖at‖2 +Kεε

s.t. pT f(st) + pT g(st)
(
uRLθk (st) + at

)
+ pTµd(st)

− kδ|p|Tσd(st) + q ≥ (1− η)h(st)− ε

ailow ≤ ait + u
RL(i)
θk

(st) ≤ aihigh for i = 1, ...,M
(14)

The last constraint in (14) incorporates possible actuator
limits of the system.

We must make clear the important distinction between the
indexes t and k. Note that t indexes timesteps within each
policy iteration or trial, whereas k indexes the policy iter-
ations (which contain trajectories with several timesteps).
The CBF controller updates throughout the task (computed



at each time step, t), whereas the RL policy and GP model
update at episodic policy iteration intervals indexed by k.

Let εmax = maxs∈C ε from (14) represent the largest vi-
olation of the barrier condition (i.e. potential deviation from
the safe set) for any s ∈ C. Lemma 1 extends to the modified
optimization problem (14), implying that uk = uRLθk +uCBFk
satisfies the barrier certificate inequality (up to εmax) that
guarantees forward invariance of C. Therefore, if there ex-
ists a solution to problem (14) such that εmax = 0, then
controller (13) renders the safe set C forward invariant with
probability (1− δ). However if εmax > 0, but ε ≤ εmax for
all s ∈ Cε, then the controller will render the set Cε forward
invariant with probability (1− δ).

Intuitively, the RL controller provides a “feedforward
control”, and the CBF controller compensates with the mini-
mum control necessary to render the safe set forward invari-
ant. If such a control does not exist (e.g. due to torque con-
straints), then the CBF controller provides the control that
keeps the state as close as possible to the safe set.

However, a significant issue is that controller (13) ensures
safety, but does not actively guide policy exploration of the
overall controller. This is because the RL policy being up-
dated around, uRLθk (s), is not the policy deployed on the
agent, uk(s). For example, suppose that in an autonomous
driving task, the RL controller inadvertently proposes to col-
lide with an obstacle. The CBF controller compensates to
drive the car around the obstacle. The next learning iteration
should update the policy around the safe deployed policy
uk(s), rather than the unsafe policy uRLθk (s) (which would
have led to an obstacle collision). However, the algorithm
described in this section updates around the original policy,
uRLθk (s), as illustrated in Figure 2a.

CBF-Based Guiding Control with
Reinforcement Learning

In order to achieve safe and efficient learning, we should
learn from the deployed controller uk, since it operates in
the safe region C, rather than learning around uRLθk , which
may operate in an unsafe, irrelevant area of state space. The
RL-CBF algorithm described below incorporates this goal.

Recall that uk, uRLθk represent the realized controllers
sampled from stochastic policies πk, πRLθk . Consider an ini-
tial RL-based controller uRLθ0 (s) (for iteration k = 0). The
CBF controller uCBF0 (s) is determined from (14) to obtain
u0(s) = uRLθ0 (s) + uCBF0 (s). For every following policy it-
eration, let us define the overall controller to incorporate all
previous CBF controllers, as in equation (15).

uk(s) = uRLθk (s) +

k−1∑
j=0

uCBFj (s, uRLθ0 , ..., u
RL
θj−1

)

+ uCBFk (s, uRLθk +

k−1∑
j=0

uCBFj ).

(15)

The dependence of controller (15) on all prior CBF con-
trollers (see Figure 1b) is critical to enhancing learning effi-
ciency. Defining the controller in this fashion leads to policy

updates around the previously deployed controller, which
adds to the efficiency of the learning process by encouraging
the policy to operate in desired areas of the state space. This
idea is illustrated in Figure 2b.

The intuition is that at iteration k = 0, the RL policy
proposed actions uRLθ0 (s), but it took safe actions uRLθ0 (s) +

uCBF0 (s). To update the policy based on the safe actions, the
effective RL controller at the next iteration (k = 1) should
be uRLθ1 (s) + uCBF0 (s), which is then filtered by the CBF
controller uCBF1 (s) (i.e. uCBF0 (s) is now part of the RL con-
troller). Across multiple policy iterations, we can consider
uRLθk (s) +

∑k−1
j=0 u

CBF
j (s, uRLθ0 , ..., u

RL
θj−1

) to be the guided
RL controller (proposing potentially unsafe actions), which
is rendered safe by uCBFk (s, uRLθk +

∑k−1
j=0 u

CBF
j ).

(a)

(b)

Figure 2: Illustration of policy iteration process, where we
try to learn the optimal safe policy, πopt. (a) Policy opti-
mization with barrier-compensating controller. Next policy
is updated around the previous RL controller, πRLθk ; (b) Pol-
icy optimization with barrier-guided controller. Next policy
is updated around previous deployed controller, πk.

To ensure safety after incorporating all prior CBF con-
trollers, they must be included into the governing QP:

(at, ε) = argmin
at,ε

‖at‖2 +Kεε

s.t. pT f(st) + pT g(st)
(
uRLθk (st) +

k−1∑
j=0

uCBFj (st) + at

)
+ pTµd(st)− kδ|p|Tσd(st) + q ≥ (1− η)h(st)− ε

ailow ≤ ait + uRL(st) +

k−1∑
j=0

uCBFj (st) ≤ aihigh

for i = 1, ...,M.
(16)



The solution to (16) defines the CBF controller uCBFk (s),
which ensures safety by satisfying the barrier condition (8).

Let εmax = maxs∈C ε from (16) represent the largest vi-
olation of the barrier condition for any s ∈ C.

Theorem 2. Using the control law uk(s) from (15), if there
exists a solution to problem (16) such that εmax = 0, then
the safe set C is forward invariant with probability (1 − δ).
If εmax > 0, but the solution to problem (16) satisfies ε ≤
εmax for all s ∈ Cε, then the controller will render the larger
set Cε forward invariant with probability (1− δ).

Furthermore, if we use TRPO for the RL algorithm, then
the control law upropk (s) = uk(s) − uCBFk (s) from (15)
achieves the performance guarantee J(πpropk ) ≥ J(πk−1)−

2λγ
(1−γ)2 δπ , where λ = maxs |Ea∼πprop

k
[Aπk−1

(s, a)]| and δπ
is chosen as in equation (4).

Proof. The first part of the theorem follows directly from
Definition 1 and Lemma 1. The only difference from Lemma
1 is that the control includes the RL controller and all previ-
ous CBF controllers (uCBF0 , ..., uCBFk−1 ).

The proof of the performance bound is given in the Ap-
pendix of this paper found at https://rcheng805.
github.io/files/aaai2019.pdf.

RL-CBF provides high-probability safety guarantees dur-
ing the learning process and can maintain the performance
guarantees of TRPO. If we have no uncertainty in the dy-
namics, then safety is guaranteed with probability 1. Note
that the performance guarantee in Theorem 2 is for control
law uk(s)− uCBFk (s), which is not the deployed controller,
uk(s). However, this does not pose a significant issue, since
uCBFk (s) rapidly decays to 0 as we iterate. This is because
the guided RL controller quickly learns to operate in the safe
region, so the CBF controller uCBFk (s) becomes inactive.

Computationally Efficient Algorithm
This section describes an efficient algorithm to implement
the framework described above, since a naive approach
would be too computationally expensive in many cases. To
see this, recall the controller (15) we would ideally imple-
ment:

uk(s) = uRLθk (s) +

k−1∑
j=0

uCBFj (s, uRLθ0 , ..., u
RL
θj−1

)

+ uCBFk (s, uRLθk +

k−1∑
j=0

uCBFj ).

The first term may be represented by a neural net-
work that is parameterized by θk, which has a standard
implementation. The third term is just a quadratic pro-
gram with dependencies on the other terms; it does not
pose a computational burden. However, the summation
in the 2nd term poses a challenge, since every term in∑k−1
j=0 u

CBF
j (s, uRLθ0 , ..., u

RL
θj−1

) depends on a different pre-
vious RL controller uRLθj . Therefore, we would need to store
k − 1 neural networks corresponding to each previous RL

controller. In addition, we would have to solve k − 1 sepa-
rate QPs in sequence to evaluate each CBF controller. Such
a brute-force implementation would be impractical .

To overcome this issue, we approximate ubarφk
(s) ≈∑k−1

j=0 u
CBF
j (s, uRLθ0 , ..., u

RL
θj−1

), where ubarφk
is a feedfor-

ward neural network (MLP) parameterized by φ. We chose
a MLP since they have been shown to be powerful function
approximators. Thus, at each policy iteration, we fit the MLP
ubarφk

(s) to data of
∑k−1
j=0 u

CBF
j (s, uRLθ0 , ..., u

RL
θj−1

) collected
from trajectories of the previous policy iteration. Then we
obtain the controller:

uk(s) = uRLθk (s) + ubarφk
(s) + uCBFk (s, uRLθk + ubarφk

).

Note that even with this approximation, safety with
probability (1 − δ) is still guaranteed. This is because
the above approximation only affects the guided RL term
uRLθk (s) +

∑k−1
j=0 u

CBF
j (s, uRLθ0 , ..., u

RL
θj−1

). The CBF con-
troller uCBFk (s, uRLθk +ubarφ ) still solves (16), which provides
the safety guarantees in Theorem 2 by satisfying the CBF
condition (8). Furthermore, we now have to store only two
NNs and solve one QP for the controller. The tradeoff is that
the performance guarantee in Theorem 2 does not necessar-
ily hold with this approximation. The algorithm is outlined
in Algorithm 1.

Experiments
We implement two versions of the RL-CBF algorithm with
existing model-free RL algorithms: TRPO-CBF, derived
from TRPO (Schulman et al. 2015), and DDPG-CBF, de-
rived from DDPG (Lillicrap et al. 2015). The code for
these examples can be found at: https://github.
com/rcheng805/RL-CBF.

Inverted Pendulum
We first apply RL-CBF to the control of a simulated inverted
pendulum from the OpenAI gym environment (pendulum-
v0), which has mass m and length, l, and is actuated by
torque, u. We set the safe region to be θ ∈ [−1, 1] radians,
and define the reward function r = θ2 +0.1θ̇2 +0.001u2 to
learn a controller that keeps the pendulum upright. The true
system dynamics are defined as follows,

θt+1 = θt + θ̇tδt+
3g

2l
sin(θt)δt

2 +
3

ml2
uδt2,

θ̇t+1 = θ̇t +
3g

2l
sin(θt)δt+

3

ml2
uδt,

(17)

with torque limits u ∈ [−15, 15], and m = 1, l = 1. To
introduce model uncertainty, our nominal model assumes
m = 1.4, l = 1.4 (40% error in model parameters).

Figure 3 compares the accumulated reward achieved dur-
ing each episode using TRPO, DDPG, TRPO-CBF, and
DDPG-CBF. The two RL-CBF algorithms converge near the
optimal solution very rapidly, and significantly outperform
the corresponding baseline algorithms without the CBFs.
We note that TRPO and DDPG sometimes converge on
a high-performance controller (comparable to TRPO-CBF



Algorithm 1 RL-CBF algorithm

1: Initialize RL Policy πRL0 , state s0 ∼ ρ0,
measurement array D̂, action array Â

2: for t = 1, . . . , T do
3: Sample (but do not deploy) control uRLθ0 (st)

4: Solve for uCBF0 (st) from optimization problem (16)
5: Deploy controller u0(st) = uRLθ0 (st) + uCBF0 (st)

6: Store state-action pair (st, uCBF0 ) in Â
7: Observe (st, u0, st+1, rt) and store in D̂
8: Collect Episode Reward,

∑T
t=1 rt

9: Update GP model using (6) and measurements D̂
10: Set k = 1 (representing kth policy iteration)
11: while k < Episodes do
12: Do policy iteration using RL algorithm based on

previously observed episode/rewards to obtain πRLθk
13: Train ubarφk

to approximate prior CBF controllers
(ubarφk

= uCBF0 + ...uCBFk−1 ) using Â
14: Initialize state s0 ∼ ρ0
15: for t = 1, . . . , T do
16: Sample control uRLθk (st) + ubarφk

(st)

17: Solve for uCBFk (st) from problem (16)
18: Deploy controller uk(st) = uRLθk (st)

+ ubarφk
(st) + uCBFk (st).

19: Store state-action pair (st, ubarφk
+ uCBFk ) in Â

20: Observe (st, uk, st+1, rt) and store in D̂
21: Collect Episode Reward,

∑T
t=1 rt

22: Update GP model using (6) and measurements D̂
23: k = k + 1
24: return πRLθk , u

bar
φk
, uCBFk

B Overall controller composed
from all 3 subcomponents

and DDPG-CBF), though this occurs less reliably and more
slowly, resulting in the poorer learning curves. More impor-
tantly, the RL-CBF controllers maintain safety (i.e. never
leave the safe region) throughout the learning process, as
also seen in Figure 3. In contrast, TRPO and DDPG severely
violate safety while learning the optimal policy.

Figure 4 shows the pendulum angle during a representa-
tive trial under the first policy versus the last learned pol-
icy deployed for TRPO-CBF and DDPG-CBF. For the first
policy iteration, the pendulum angle is maintained near the
edge of the safe region – the RL algorithm has proposed a
poor controller so the CBF controller takes the minimal ac-
tion necessary to keep the system safe. By the last iteration
though, the CBF controller is completely inactive (uCBF =
0), since the guided RL controller (uRLθk (s) + ubarφk

(s)) is al-
ready safe.

Simulated Car Following
Consider a chain of five cars following each other on a
straight road. We control the acceleration/deceleration of the
4th car in the chain, and would like to train a policy to maxi-

Figure 3: (Top) Maximum angle (rad) of the pendulum
throughout each episode. Values above the dashed black line
represent exits from the safe set at some point during the
episode. (Bottom) Comparison of accumulated reward from
inverted pendulum problem using TRPO, DDPG, TRPO-
CBF, and DDPG-CBF.

Figure 4: Representative pendulum trajectory (angle vs.
time) using first policy vs last policy. The left plot and right
plot show results from TRPO-CBF and DDPG-CBF, respec-
tively. The trajectory for the first policy (blue) goes to edge
of the safe region and stays there, while the trajectory for the
last policy (red) quickly converges to the upright position.

mize fuel efficiency during traffic congestion while avoiding
collisions. Each car utilizes the dynamics shown in equation
(18), and we attempt to optimize the reward function (19).
The car dynamics and reward function are inspired by pre-
vious work (He, Ge, and Orosz 2018).

[
ṡ(i)

v̇(i)

]
=

[
0 1
0 −kd

] [
s(i)

v(i)

]
+

[
0
1

]
a kd = 0.1. (18)



r = −
T∑
t=1

[
v
(4)
t max((a

(4)
t ), 0) +

4∑
i=3

Gi

( 500

s
(i)
t − s

(i+1)
t

)]
,

Gm(x) =

{
|x| if s(m) − s(m+1) ≤ 3

0 otherwise
(19)

The first term in the reward optimizes fuel efficiency,
while the other term encourages the car to maintain a 3 me-
ter distance from the other cars (soft constraint). For the RL-
CBF controllers, the CBF enforces a 2 meter safe distance
between cars (hard constraint). The behavior of cars 1,2,3,
and 5 is described in the Appendix.

The 4th car has access to every other cars’ position, veloc-
ity, and acceleration, but it only has a crude model of its own
dynamics (kd = 0) and an inaccurate model of the drivers
behind and in front of it. In addition, we add Gaussian noise
to the acceleration of each car. The idea is that the 4th car
can use its crude model to guarantee safety with high prob-
ability, and improve fuel efficiency by slowly building and
leveraging an implicit model of the other drivers’ behaviors.

From Figure 5, we see that there were no safety violations
between the cars during our simulated experiments when us-
ing either of the RL-CBF controllers. When using TRPO and
DDPG alone without CBF safety, almost all trials had col-
lisions, even in the later stages of learning. Furthermore, as
seen in Figure 5, TRPO-CBF learns faster and outperforms
TRPO (DDPG-CBF also outperforms DDPG though neither
algorithm converged on a high-performance controller in our
experiments). It is important to note that in some experi-
ments, TRPO finds a comparable controller to TRPO-CBF,
but this is often not the case due to randomness in seeds.

Although DDPG and DDPG-CBF failed to converge on a
good policy, Figure 5 shows that DDPG-CBF (and TRPO-
CBF) always maintained a safe controller. This is a crucial
benefit of the RL-CBF approach, as it guarantees safety in-
dependent of the system’s learning performance.

Conclusion
Adding even crude model information and CBFs into the
model-free RL framework allows us to improve the ex-
ploration of model-free learning algorithms while ensuring
end-to-end safety. Therefore, we proposed the safe RL-CBF
framework, and developed an efficient controller synthesis
algorithm that guarantees safety and improves exploration.
These features will be crucial in deploying reinforcement
learning on physical systems, where problems require online
computation and efficient learning with safety guarantees.

This framework, which combines model-free RL-based
control, model-based CBF control, and model learning has
the additional advantages of being able to (1) easily inte-
grate new RL algorithms (in place of TRPO/DDPG) as they
are developed, and (2) incorporate better model information
from measurements to online improve the CBF controller.

A significant assumption in this work is that we are given
a valid safe set, h(s), which can be rendered forward in-
variant. However, computing these valid safe sets is non-
trivial and computationally intensive (Wang, Theodorou,

Figure 5: (Top) Minimum headway between cars during
each learning episode using DDPG, TRPO, DDPG-CBF,
and TRPO-CBF. Values below the dashed black line repre-
sent exits from the safe set, and values below 0 represent
collisions. The curve for DDPG has high negative values
throughout learning, and is not seen. (Bottom) Comparison
of reward over multiple episodes from car-following prob-
lem using TRPO, TRPO-CBF, and DDPG-CBF (DDPG is
excluded because it exhibits very poor performance).

and Egerstedt 2017; Wabersich and Zeilinger 2018; Fisac
et al. 2018). If we are not given a valid safe set, we may
reach states where it is not possible to remain safe (i.e.
εmax ≥ 0). Although our controller achieves graceful degra-
dation in these cases, in future work it will be important to
learn the safe set in addition to the controller.
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Appendix A: Proof of Theorem 2
Theorem 2. Using the control law uk(s) from (15), if there
exists a solution to problem (16) such that εmax = 0, then
the safe set C is forward invariant with probability (1 − δ).
If εmax > 0, but the solution to problem (16) satisfies ε ≤
εmax for all s ∈ Cε, then the controller will render the set Cε
forward invariant with probability (1− δ).

Furthermore, if we use TRPO for the RL algorithm, then
the control law upropk (s) = uk(s) − uCBFk (s) from (15)
achieves the performance guarantee J(πpropk ) ≥ J(πk−1)−

2λγ
(1−γ)2 δπ , where λ = maxs |Ea∼πprop

k
[Aπk−1

(s, a)]| and δπ
is chosen as in equation (4).

Proof. To prove the performance bound in the second part of
the theorem, we use the property of the advantage function
from equation (20) below:

J(πk) = J(πk−1) + Eτ∼πk

[ ∞∑
t=0

γtAπk−1
(st, at)

]
, (20)

where st+1 ∼ P (st+1|st, at). As derived in (Schulman et
al. 2015), we can then obtain the following inequality:

J(πk) ≥ J(πk−1) +
1

1− γ
Est∼πk−1

at∼πk

[ ∞∑
t=0

γtAπk−1
(st, at)

− 2γλ

1− γ
DTV (πk−1, πk)

]
,

(21)

where DTV (πk−1, πk) is the total variational
distance between policies πk−1 and πk, and
λ = maxs |Ea∼πk

[Aπk−1
(s, a)]|. Note that our CBF

controllers are all deterministic, so we can redefine
ubarrierk−1 =

∑k−2
j=0 u

CBF
j + uCBFk−1 =

∑k−1
j=0 u

CBF
j . Based

on this definition and equation (15), we can rewrite/define
the following controllers:

uk−1(s) = uRLθk−1
(s) + ubarrierk−1 (s),

πk−1(a|s) = πRLθk−1
(a− ubarrierk−1 (s) | s),

(22)

upropk (s) = uRLθk (s) + ubarrierk−1 (s),

πpropk (a|s) = πRLθk (a− ubarrierk−1 (s) | s).
(23)

We can plug in the above relations for πk−1 and πpropk
into inequality (21), to obtain the following bound (we plug
in πpropk for πk):

J(πpropk ) ≥ J(πk−1) +
1

1− γ
E st∼πk−1

at∼πprop
k

[ ∞∑
t=0

γtAπk−1
(st, at)

− 2γλ

1− γ
DTV (π

RL
θk−1

(a− ubarrierk−1 ), πRLθk (a− ubarrierk−1 ))
]
,

(24)

where we drop the policies’ dependency on the state s for
compactness. Due to the shift invariance of the total varia-
tional distance, DTV , we can simplify this to:

J(πpropk ) ≥ J(πk−1) +
1

1− γ
E st∼πk−1

at∼πprop
k

[ ∞∑
t=0

γtAπk−1
(st, at)

− 2γλ

1− γ
DTV (π

RL
θk−1

, πRLθk )
]
.

(25)

Because πk−1 is a feasible point of the TRPO optimiza-
tion problem (4) with objective value 0, we know that our
solution πpropk satisfies the following:

E st∼πk−1

at∼πprop
k

[ ∞∑
t=0

γtAπk−1
(st, at)

]
≥ 0.

Since the optimization problem (4) specifies the bound
DTV (π

RL
θk−1

, πRLθk ) ≤ δπ , then it follows that:

J(πpropk ) ≥ J(πk−1)−
2λγ

(1− γ)2
δπ, (26)

where λ = maxs |Ea∼πprop
k

[Aπk−1
(s, a)]|. The realization

of the policy πpropk (a|s) is:

upropk (s) = uRLθk (s) + ubarrierk−1 (s) = uk(s)− uCBFk (s).

Therefore, if we utilize the policy uk(s) − uCBFk (s), we
can obtain the performance bound in equation (26).

Appendix B: Car-Following Problem
Driver Behavior and System Dynamics
In this section, we elaborate on the behavior of the cars in
the car-following numerical experiment. The dynamics for
the drivers follows equation (20), and their acceleration is
described as follows:

a(1) = vdes − 10 sin(0.2t)

a(i) = kp(vdes − v(i))− kbG1(s
(i−1) − s(i)) for i = 2, 3

a(5) = kp(vdes − v(i))−
1

2
kbG2(s

(3) − s(5)) for i = 5

G1(x) =

{
x if x ≤ 6

0 otherwise
, G2(x) =

{
x if x ≤ 12

0 otherwise

kp = 4, kb = 20, vdes = 30, a ∈ [−100, 100]
(27)

where a(i) represents the acceleration for driver i. In ad-
dition, gaussian noise is added to the acceleration of each
driver. In driver four’s nominal model of the other drivers’
behavior, kp = 3.5, kb = 18, and kd = 0.



Explanation for High Reward of DDPG in Initial
Trials
In Figure 5, the reward of DDPG-CBF starts very high for
early trials, and then drops to lower values. This arises due to
stochasticity in the drivers’ behaviors, which makes certain
bad control strategies perform well in rare specific cases.

In most trials, our car must accelerate at certain points (de-
creasing reward) in order to avoid collision with the driver
behind. However, if the rear driver significantly slows down
during certain trials due to stochasticity in their behavior,
our car can simply cruise with little acceleration throughout
these trials (these correspond to the few, initial high reward
trials).

This strategy of cruising (little/no acceleration) is gener-
ally bad because if the driver behind does not slow down,
our car must accelerate heavily at the last second to avoid
collision, accumulating heavy penalty. The DDPG algorithm
learns to avoid this do nothing initially strategy.


