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Abstract— When autonomous robots interact with humans,
such as during autonomous driving, explicit safety guaran-
tees are crucial in order to avoid potentially life-threatening
accidents. Many data-driven methods have explored learning
probabilistic bounds over human agents’ trajectories (i.e. con-
fidence tubes that contain trajectories with probability δ), which
can then be used to guarantee safety with probability 1 − δ.
However, almost all existing works consider δ ≥ 0.001. The
purpose of this paper is to argue that (1) in safety-critical
applications, it is necessary to provide safety guarantees with
δ < 10−8, and (2) current learning-based methods are ill-
equipped to compute accurate confidence bounds at such low δ.
Using human driving data (from the highD dataset), as well as
synthetically generated data, we show that current uncertainty
models use inaccurate distributional assumptions to describe
human behavior and/or require infeasible amounts of data to
accurately learn confidence bounds for δ ≤ 10−8. These two
issues result in unreliable confidence bounds, which can have
dangerous implications if deployed on safety-critical systems.

I. INTRODUCTION

Autonomous robots will be increasingly deployed in un-
structured human environments (e.g. roads and malls) where
they must safely carry out tasks in the presence of other
moving human agents. The cost of failure is high in these
environments, as safety violations can be life-threatening. At
present, safety is often enforced by learning an uncertainty
distribution or confidence bounds over the future trajectory
of other agents, and designing a controller that is robust
to such uncertainty [1]. Based on these learned trajectory
distributions, probabilistic safety guarantees can be provided
at a specified safety threshold δ over a given planning horizon
(e.g. by enforcing chance constraints such that P(collision) ≤
δ) [2]–[5]. However, for such guarantees to hold, it is critical
that we accurately predict the uncertainty over other agents’
future trajectories with high probability 1− δ.

Current works that aim to provide probabilistic safety
guarantees for autonomous navigation in uncertain, human
environments consider safety thresholds in the range δ ≥
0.001. While such guarantees are important, safety critical
applications require δ that are orders of magnitude lower [6].

Suppose a robot/car is guaranteed safe with prob-
ability 1 − δ across every 10s planning horizon.
Given δ ≈ 0.001, we could expect a safety viola-
tion every 3 hrs. For reference, based on NHTSA
data [7], human drivers have an effective safety
threshold δ < 10−7.
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It is clear then that for safety-critical robotic applications,
we must strive for extremely low safety thresholds, on the
order δ ≤ 10−8. However, this paper argues that current
learning-based approaches that model human trajectory un-
certainty (a) rely on highly inaccurate distribution assump-
tions, invalidating resulting safety guarantees, and/or (b) can
not adequately extend to safety-critical situations. To illus-
trate this, we applied different uncertainty models (see Table
1) to data of human driving from the highD dataset [8].
We found that even under extremely generous assumptions,
learned models are highly inaccurate in capturing human
behavior at low δ, often mispredicting the probability of
rare events by several orders of magnitude. Furthermore,
we show that increasing dataset sizes will not sufficiently
improve accuracy of learned uncertainty models.

Our results highlight potential danger in utilizing learned
models of human uncertainty in safety-critical applications.
Fundamental limitations prevent us from accurately learning
the probability of rare trajectories with finite data, and
using inaccurate confidence bounds can result in unexpected
collisions. While this paper focuses on illustrating a crucial
problem (rather than providing a solution), we conclude
by discussing alternative approaches that can address these
limitations by combining (a) learned patterns of behavior and
(b) prior knowledge encoding human interaction rules.

Before proceeding, we emphasize three critical points
regarding our results:
• We focus on in-distribution error, rather than out-of-

distribution error. I.e., we highlight the fundamental
inability of uncertainty models to accurately capture
distributions at very low δ, regardless of generalization.

• We focus not on robust control algorithms, but rather on
the learned uncertainties that such algorithms leverage.

• We distinguish motion predictors from uncertainty mod-
els. While recent performance of motion predictors has
drastically improved [9], they all leverage an underlying
uncertainty model (see Table 1) to capture the probabil-
ity of uncommon events. E.g. most neural network mo-
tion predictors output a Gaussian uncertain prediction.
This paper focuses on errors associated with uncertainty
models (which propagate to the motion predictors).

II. RELATED WORK
Most recent approaches for guaranteed safe navigation in

proximity to humans or their cars approximate uncertainty in
human trajectories as a random process (i.e. deviations from
a nominal trajectory are drawn i.i.d. from a learned distribu-
tion). These uncertainty models capture noise and the effects



Uncertainty Model Class Example Works Min. Safety Threshold
Gaussian Process [2], [10]–[12] δ ≥ 0.001
Dynamics w/ Gaussian Noise [13]–[15] δ ≥ 0.001
Bayesian NN [16]–[18] δ ≥ 0.05
Noisy Rational Model [3] δ ≥ 0.01
Hidden Markov Model /
Markov Chain [19], [20] δ ≥ 0.01

Quantile Regression [5] δ ≥ 0.05
Scenario Optimization [21]–[23] δ ≥ 0.01
Generative Models (e.g. GANs) [9], [24], [25] N/A

TABLE I: Different model classes for capturing human trajectory uncertainty, used in safe planning algorithms to guarantee
safety with probability 1− δ. The right column shows the lowest safety threshold, δ, we could find used in the literature (in
simulation or hardware experiments) for each model class. There is no entry for generative models, as these models have
not yet been utilized to provide explicit safety guarantees during planning, though there is surely a trend in this direction.

of latent variables (e.g. intention), and enable probabilistic
safety guarantees in uncertain, dynamic environments. Most
models fall into one or more of the following categories:

• Gaussian Process (GP): These approaches model other
agents’ trajectories as Gaussian processes, which treat
trajectory uncertainty as a multivariate Gaussian [2], [11],
[12], [14], [26]. There are several extensions, such as the
IGP model [27] (which accounts for interaction between
multiple agents), or others [28], [29]. However, they all
treat uncertainty as a multivariate Gaussian.

• Gaussian Noise with Dynamics Model: These ap-
proaches use a dynamics model with additive Gaussian
noise; noise can also be added in state observations.
This induces a Gaussian distribution over other agents’
future trajectory (or a situation where we can do moment-
matching) [15], [30].

• Quantile Regression: This approach computes quantile
bounds over the trajectories of other agents at a given con-
fidence level, δ. This approach benefits from not assuming
an uncertainty distribution over trajectories [5], [31].

• Scenario Optimization: This approach computes a pre-
dicted set over other agents’ actions based on samples of
previously observed scenarios [32]. It is distribution-free
(i.e. does not assume a parametric uncertainty distribution)
[21]–[23], [33]. [34], [35] do not use scenario optimiza-
tion, but their work based on computing minimum support
sets follows a similar flavor.

• Noisy (i.e. Boltzmann) Rational Model: This model
treats the human as a rational actor who takes “noisily op-
timal” actions according to a distribution in the exponential
family, shown in Eq. (5). The uncertainty in the action is
captured by this distribution, which relies on an accurate
model of the human’s value function [1], [3], [36]–[38].

• Generative Models (CVAE, GAN): These models learn
an implicit distribution over trajectories. Rather than give
an explicit distribution, they generate random trajectories
that try to model the true distribution [9], [24], [25].

• Hidden Markov Model (HMM) / Markov Chain:
These models capture uncertainty over discrete sets of

states/intentions (e.g. goal positions) – as opposed to
capturing uncertainty over trajectories. Thus, the objective
is to infer the other agents’ unobserved state/intention
(from a discrete set) with very high certainty, 1− δ [19],
[20], [39]–[43].

• Uncertainty Quantifying (UQ) Neural Networks: These
approaches do not constitute a separate class of uncertainty
models, but refer to methods that train a neural network to
capture the distribution over other agents’ trajectories [16],
[18], [44]. We list them separately due to their popularity.
Most often these networks output a Gaussian distribution
or mixture of Gaussians (e.g. Bayesian neural networks
[45], deep ensembles [46], Monte-Carlo dropout [47]).
These models can also quantify uncertainty over discrete
states (i.e. infer the hidden state in HMMs) [48], [49].

Once a predicted trajectory and its uncertainty is learned,
many mechanisms exist to guarantee safety (e.g. incorpo-
rating uncertainty into chance constraints). In this work,
we do not focus on these mechanisms (i.e. robust control
algorithms) for guaranteeing safety; rather we focus on the
issue of learning/modeling trajectory uncertainty, which such
mechanisms must leverage for their safety guarantees.

III. ISSUES WITH UNCERTAINTY MODELS
This section illustrates the limitations of probabilistic

models of uncertainty when considering human behavior. We
show that prevalent classes of uncertainty (see Table 1) fail
to capture human behavior at adequate safety thresholds (δ ≤
10−8), and exhibit significant errors when evaluated against
real-world data. Since safe planning algorithms assume their
computed uncertainty distributions are accurate, significant
errors invalidate any claimed safety guarantees.

We highlight these limitations by testing prevalent model-
ing assumptions on real-world driving data from the highD
driving dataset [8], which captures vehicles driving on Ger-
man highways. From this dataset, we extract all trajectories
of length 10 seconds, τ[0,10], along with their corresponding
environmental context, Eτ (i.e. position/velocity of surround-
ing cars). We then split the trajectories into a training set,
(τ

(train)
[0,10] , E(train)

τ ) ∈ Dtrain, and test set, (τ
(test)
[0:10] , E

(test)
τ ) ∈



Fig. 1: (Left) In this example the red car must take into account the blue car’s trajectory – and its uncertainty – in its
plan to progress safely through the intersection. The dashed yellow curves denote the boundary of a tube that defines the
δ confidence bound over trajectories. The white circle depicts a distribution over trajectories. The blue lines are example
trajectories. (Right) Simplified illustration of different stages of the control pipeline. While every stage (prediction, planning,
tracking) is crucial to guaranteeing safety, this paper focuses exclusively on the yellow box, prediction.

Dtest. For every test trajectory, (τ
(test)
[0:10] , E

(test)
τ ) ∈ Dtest,

we collect all trajectories in the training set in equivalent
scenarios,

M(τ
(test)
[0:10] , E

(test)
τ ) =

{
τ[0:10]

∣∣∣ (τ[0:10], Eτ ) ∈ Dtrain ,

‖τ[0:2] − τ
(test)
[0:2] ‖∞ < ε , ‖Eτ − E(test)

τ ‖∞ < εE

}
.

(1)

We define equivalent scenarios as the set of trajectories
with similar environmental context that are ε-close (ε = 2ft)
over their first 2s. Therefore,M(τ (test), E(test)

τ ) denotes the
set of scenarios (within the training set, Dtrain) that are
equivalent to (τ (test), E(test)

τ ). We chose a past observation
horizon of 2s following [49], but found that the observed
trends did not change considerably when using 1s or 3s for
the past observation horizon.

For every test trajectory, (τ (test), E(test)
τ ) ∈ Dtest, we fit

optimal parameters for an uncertainty model (e.g. Gaussian)
to the equivalent training scenarios, M(τ (test), E(test)

τ ), and
observe where the test trajectory falls with respect to the
computed distribution or bounds. By iterating through all
trajectories in Dtest, we can compute statistics analyzing how
well the test trajectories fit to models predicted from the
training trajectories.

Intuition in equations: To clarify our method and make
clear our assumptions, we outline our approach in terms of
different distribution errors. Let us define an agent’s state
x = (τ[0:2], Eτ ), and its action, a, as its future trajectory
a = τ[2:10]. Given that the future trajectory is drawn from
some uncertain distribution, a ∼ A(x), our goal is to learn
a model F̂ (x) that accurately approximates this distribution
over trajectories, A(x), minimizing the following error,

Lout = E
[
m
(
A(x)‖F̂ (x)

)]
, (2)

where m defines some metric over probability distributions
(e.g. total variation distance). The model F̂ is trained on data
from our training set Dtrain. Since we don’t have access to

the true distribution, we can approximate the expectation in
(2) using the test set, Dtest, yielding the error functions,

Lunseen =
1

Nunseen

∑
x∈Dtest

[
m
(
Â(x)‖F̂ (x)

)]
,

Lseen =
1

Nseen

∑
x∈Dtest∩Dtrain

[
m
(
Â(x)‖F̂ (x)

)]
,

(3)

where Â(x) represents the approximation of A(x) based on
Dtest, and Nunseen, Nseen are normalizing factors denoting
the number of trajectories being considered. Lunseen can be
interpreted as the test error, capturing how well the model F̂
captures the action distribution Â from states it did not train
on. On the other hand, Lseen captures how well F̂ captures
the action distribution, Â, from states it has trained on. In
general, the relationship between these errors follows,

Lout ≥︸︷︷︸
distribution gap

Lunseen ≥︸︷︷︸
generalization gap

Lseen. (4)

In our analysis, we focus on Lseen. As this ignores any
generalization or distribution gap, it benchmarks the best
potential performance of each model class. The distribution
gap quantifies how the change from the true trajectory distri-
bution to the test distribution Dtest affects model accuracy.
The generalization gap quantifies how out-of-distribution test
examples affect the model accuracy.

Accounting for replanning: Most motion planning algo-
rithms re-plan their trajectory at some fixed frequency (e.g.
1Hz). To account for this, we examine prediction error (e.g.
violation of the δ−uncertainty bound) only within a short re-
planning horizon. I.e. the prediction must only be accurate
within this replanning horizon. The horizon is set to 2 sec.

Incorporating conservative assumptions: To further high-
light the fundamental limitations of learning uncertainty
models of human behavior, since many prediction algorithms
leverage goal inference, we assume that an oracle gives us the
target lane of every trajectory. Note that our aim is to illus-
trate limitations of learned probabilistic models, even under



ideal conditions. Therefore, our strong assumptions (though
unrealistic) help us reason about the best-case scenario for
each model class, providing an upper-bound on performance.

Summarizing, we consider (a) there is no distribution gap,
(b) there is no generalization gap, and (c) we are given the
target lane of every trajectory.

If the models perform poorly under these extremely
generous assumptions, we can not expect reason-
able performance in realistic settings.

A. Gaussian Uncertainty Models

We start by analyzing the popular Gaussian uncertainty
model, used in most UQ neural networks [18], Gaussian
process models [2], and robust regression [4], [29]. These
approaches model the data and its uncertainty with a Gaus-
sian distribution (see top 3 rows in Table 1).

Using the procedure outlined at the beginning of Section
III, we compute the best-fit Gaussian distribution, F̂ , over the
training trajectories Dtrain, and observe how well it captures
the in-distribution test trajectories in Dtest (i.e. minimizes
Lseen). Figure 2 (K = 1) shows the ratio of observed to
expected violations in the test set at each safety threshold,
δ. A violation is defined when the test trajectory lies outside
the δ-uncertainty bound (within a 2s re-planning horizon)
for a specified δ. If the data followed a perfect Gaussian
distribution, each curve in Fig. 2 would track the dotted black
line (i.e. keep a ratio near 1). However, we see that while
the Gaussian model might be valid for δ ≥ 0.01, it is highly
inaccurate outside this range, posing a problem for safety-
critical applications.

Fig. 2: Prediction error vs. safety threshold, δ, using Gaussian
mixture models on the highD dataset, considering a 2s re-
planning horizon. K denotes the number of mixtures used,
with K = 1 denoting a standard Gaussian distribution. The
dashed black line represents a perfect prediction model.

Gaussian mixture models (GMM): One might point out
that problems with the Gaussian model could be alleviated
using GMMs over a discrete set of goals (e.g. left versus right
turn). For example, interacting Gaussian processes (IGP)
leverage this tool to alleviate the freezing robot problem
[27]. However, when we trained GMMs on the same data

with different numbers of mixtures (K = 2, ..., 4), prediction
performance on test data did not improve for low δ (see Fig.
2). These results illustrate limitations of any Gaussian-based
uncertainty model (IGP, GMM, etc.), by highlighting that
human behavioral variation is inherently non-Gaussian.

In addition to the issue of inaccurate distributional as-
sumptions, the confidence bounds at level δ ≈ 10−8 become
very large, making planning around these bounds difficult
or potentially infeasible. Figure 3 shows the 5σ confidence
tube projecting the position of a car forward in time, based on
the training data. Note that the 5σ ellipsoid (corresponding
to δ < 10−6) encroaches on each lane, making it difficult
for other cars to drive alongside it. This is because, although
the car will typically stay in its lane, in rare instances (as
shown in Figure 3) it will unexpectedly swerve into the other
lane. This illustrates the difficulty of balancing the safety-
efficiency tradeoff, as accounting for very rare events may
be necessary for safety-critical applications, but this also
introduces extreme conservatism.

Fig. 3: Example of a car’s trajectory, along with the ap-
proximate 5σ confidence bound computed from the training
trajectories, given the car’s target lane 8 seconds in the future.

To further emphasize fragility of the Gaussian model at
low δ, we generated synthetic 2D data from different, known
distributions, and examined how well the best fit Gaussian
predicted violations at a given δ. Even with perfectly i.i.d.
training/test data, the error at low δ was significant. Details
and results are in Appendix A (found at [50]).

B. Noisy Rational Model

The noisy rational model considers that humans behave
approximately optimally with respect to some reward func-
tion. It has enabled significant progress in inverse reinforce-
ment learning (IRL) by allowing researchers to learn reward
functions from human data [37], and compute explicit un-
certainty intervals over human agents’ actions [3]. However,
the noisy rational model adopts an underlying model of
uncertainty in the exponential family, which places a strong
assumption on the shape of the uncertainty distribution and
assumes that there is a single “optimal” trajectory:

P(xt+1 | β) =
eβQH(xt+1)∑
x̃t+1

eβQH(x̃t+1)
. (5)

In our driving scenario, the optimal model simplifies to the
Gaussian distribution, since QH = ‖xt+1 − x̂t+1‖Σ for
some Σ (i.e. we want to best fit the data). As a result, the
issues illustrated in Figures 2 and 3 are exactly faced by
the noisy rational model (i.e. the shape of the underlying



distribution does not match the assumed distribution). Thus,
even in the best case – known target lane, optimal data fit, no
generalization gap – these models are ill-equipped to provide
safety guarantees for safety-critical systems (e.g. δ < 10−8).

C. Quantile Regression

Quantile regression is an appealing alternative as it does
not require strong assumptions on the underlying uncertainty
distribution [5]. It is only concerned with computing tubes
such that 1−δ proportion of trajectories are within that tube
and δ are outside. To demonstrate its performance, we revisit
the highD dataset and compute quantile bounds for each
trajectory in the test set, using the equivalent scenarios from
our training set. These quantile bounds are approximated as
the smallest convex tube containing 1− δ proportion of tra-
jectories, which optimizes the expected mutual information
between the state, x, and action, a [51].

Fig. 4: Prediction error vs. safety threshold, δ using com-
puted quantile bounds or Gaussian uncertainty model on the
highD dataset (assuming 2s re-planning horizon). The dashed
black line represents a perfect prediction model.

Figure 4 shows the ratio of the observed to expected
number of test trajectories outside each quantile at safety
threshold δ. As seen in the plot, the quantile regression model
performs much better than the Gaussian model for δ > 0.1.
However, performance rapidly deteriorates as δ decreases,
making estimated confidence bounds meaningless, since they
fail to predict violation probabilities.

This result makes sense, as obtaining accurate quantile
bounds at the δ-confidence level relies on splitting the data:
δ percent of points should be outside the quantile bound
with the rest inside those bounds. However, little (if any)
data is available outside the quantile bound for very low δ.
Put differently, to observe a one-in-a-million event, we would
need to see a million trajectories. To reliably predict those
events, we would need many more trajectories.

Improving Accuracy with Increasing Data: Given the
availability of increasingly large robotics datasets, we should
ask whether we could reach good accuracy at desired safety
thresholds, δ, by using more data. To answer this, we define

the smallest accurate safety threshold, δmin, as follows,

δmin = min δ such that

∣∣∣∣∣log

(
expected(δ)

observed(δ)

)∣∣∣∣∣ ≤ ε .
(6)

We set ε = 0.5, where ε represents the vertical distance
between each curve in Fig 4 and the dotted black line.
Thus, δmin represents the smallest δ such that our computed
quantile bounds are ε-accurate. Note that δmin is computed
with respect to a given set of data. Therefore, by varying the
size of our training set, we capture how δmin varies with
the amount of training data, shown in Fig. 5a. The trend
shown in Fig. 5a is surprisingly linear (r2 = 0.995), which
held across different sections of the dataset (i.e. different
highways). This scaling is consistent with the lower bound
on sample complexity derived in [52], shown in Eq. (7) and
discussed further below.

While initially promising, if we project this linear trend
down to δmin ≈ 10−8, we find that the amount of data re-
quired to reach safety-critical thresholds is far from feasible.
Figure 5b shows that we would need trillions of kilometers of
driving data to achieve accurate quantile bounds, even under
extremely generous assumptions (e.g. perfect generalization).
For reference, in 2018, approximately 5 trillion kilometers
were driven in total across all cars/trucks in the U.S. [7].

We conducted the same analysis on synthetic 2D data, and
found the same trends seen in Figures 4 and 5. Details and
results are in Appendix B (found at [50]).

Quantile Regression as a Fundamental Limitation: One
might be tempted to conclude from Figure 5b that we should
look for alternative methods (to quantile regression) that
have better data efficiency / sample complexity. Note that
all methods providing confidence bounds over trajectories at
a specified safety threshold δ can be fundamentally viewed
as classification problems; we must classify 1−δ trajectories
within some learned bounds, with the rest outside those
bounds. By viewing this as a classification problem, we can
leverage results from VC-analysis that lower bound the data
required, N , to reach a given prediction confidence [52]: To
guarantee Pr(error) ≤ δ, we require

N(δ,M) = Ω
(1

δ
ln
(1

δ

)
+

VCdim(M)

δ

)
(7)

where VCdim(M) is the VC dimension of the utilized model
M (see [52] for proof). The linear trend in Fig. 5 (showing
N(δ) ∝ 1

δmin
) fits very nicely with the lower bound (7),

given that the second term dominates the first (i.e. we have
large VC dimension). Note that if the first term dominated
the second term, we would expect worse data scaling.

This analysis suggests that alternative methods
cannot provide confidence bounds with better data
scaling than shown in Figure 5.

D. Other Uncertainty Models

Due to space constraints, we discuss remaining models
in Appendix C (found at [50]), including: (1) generative
models (e.g. CVAE, GAN), (2) scenario optimization, and (3)



Fig. 5: (a) Smallest accurate δ versus amount of data collected. The trend is highly linear (r2 ≈ 0.995), and holds across
different sections of the dataset. (b) Projection showing the expected amount of data required to obtain an accurate safety
threshold δmin. The dashed lines show the number of kilometers driven in California in 2019 by Waymo, Cruise, and Nuro.

hidden Markov models (HMM). However, below, we briefly
describe fundamental problems each of these models face:
• Scenario optimization – similar to quantile regression –

requires far too much data to be feasible for small δ. Even
with 40,000 trajectories in equivalent scenarios, we only
reach δ ≈ 10−4.

• Generative models implicitly learn the distribution A(x) =
p(a|x). However, it has been shown – empirically and the-
oretically – that they can fail to learn the true distribution,
even when their training objective nears optimality [53].
Also, using state-of-the-art models [9], [24], [25], it would
require at least a day to generate enough trajectories to
certify safety with δ ≈ 10−8.

• HMMs are distinct as they learn probabilities over discrete
states (e.g. goal positions). However, we show that even
with a known observation function, P(obs|state), it is
highly unlikely to obtain sufficient confidence (δ ≈ 10−8)
of being in a given state.

Note on UQ Neural Networks: We have not discussed UQ
neural networks, because neural networks do not compose a
distinct class of uncertainty models. Instead, they only pro-
vide a functional representation of the uncertainty in a given
class (e.g. UQ neural networks typically output a Gaussian
distribution). Our results highlight best-case performance
bounds for each class of model uncertainties, given optimal
fit to the data. Thus, using neural networks to parameterize
the model uncertainty will only yield worse performance.

IV. CONCLUSION AND FUTURE WORK
Our main message is that even under extremely generous

assumptions, current models of human uncertainty are unable
to extend safety guarantees to the confidence levels, e.g. δ <
10−8, that are needed for widespread adoption of safety-
critical autonomy in human environments.
Learned uncertainty distributions become highly inaccurate

at low δ, undermining any claimed guarantees of safety..
There is a fundamental limitation to modeling human uncer-
tainty purely as a random process. Data-driven methods (i.e.
machine learning) are designed to capture prominent patterns
in data and predict likely events; they are not suited to predict
rare events. Intuitively, we need a million samples to observe

a one-in-a-million event, and we need many more samples to
reliably predict those events. While it is theoretically possible
that huge datasets could eventually enable accurate prediction
of rare events, our analysis shows that such amounts of
data are far from feasible in the near future (even ignoring
generalization issues and computational cost).

Human uncertainty vs. sensor-based uncertainties: Even
if a system must be certified safe with δ = 10−8, it is
uncommon to require any single module to have a failure
probability less than 10−8. Instead, redundancy with multi-
ple, independent modules can help certify system safety. For
example, in a robotic system, two different modules (one
using LIDAR and one using stereo cameras) might predict
an obstacle’s current position, each with confidence 1−10−4.
Then the overall system can reason about the obstacle’s po-
sition with confidence 1−10−8. The key is that the modules
must be independent. While this may be a fair assumption
for sensing uncertainty, it is not fair for human behavior
prediction. However, this could be a promising avenue of
research: to simultaneously learn multiple predictors [54],
while enforcing independence between their predictions.

Future Work: A promising solution to guarantee safety at
low δ is to utilize prior knowledge about human behavior;
in particular, humans obey interaction rules (e.g. signaling
intent) [55], which bound uncertainty in useful ways. These
rules can be encoded through assume-guarantee contracts
[56]. A contract might encode that an agent cannot mislead
others about its intention, assuming that others do not mis-
lead it. For example, on the highway, an agent cannot first
pretend to yield to a merging vehicle (i.e. slow down), before
speeding up to hit it. We thus propose trading one challenge
for another: rather than learning uncertainty bounds that
agents obey with probability 1 − δ, we should instead aim
to specify interpretable contracts (i.e. behavioral constraints)
with learned components that agents must surely obey.

We believe such a framework is necessary to move
away from treating uncertainty in human behavior purely
as a random process. Instead, human uncertainty can be
constrained by combining learned components that predict
expected actions and prior knowledge restricting the danger
of rare events in a rigorous, interpretable manner.
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APPENDIX A:
FRAGILITY OF GAUSSIAN UNCERTAINTY MODEL

(SYNTHETIC DATA)

We further tested the Gaussian uncertainty model on a
synthetic 2D data set, using the same process detailed in
Section 3A. Each 2D data point is analogous to a trajectory,
a = τ[2:10] ∼ A, in the highD driving dataset. Therefore,
the goal is still to learn the model F̂ that best matches the
data distribution A, minimizing m(A||F̂). However, using
synthetic data allows us to test the accuracy of the uncer-
tainty model with respect to a known underlying probability
distribution, A.

We randomly generated 10,000 2D points for training data
(further increasing the amount of training data did not im-
prove performance) from 3 different distributions: (a) perfect
Gaussian, (b) Gaussian with uniform noise (magnitude of
noise was 30% of the data range), and (c) Gaussian with
symmetric non-uniform noise (also 30% magnitude). For
each of these training datasets, we computed the Gaussian
uncertainty model that best fit the data. We then generated
10,000,000 2D points for our test data following the exact
same distribution as the training data, and observed how
well our computed Gaussian uncertainty model captured the
test data.

Fig. 6: Prediction error vs. safety threshold, δ, using a Gaus-
sian uncertainty model on synthetic 2D data generated from
3 different distributions. The dashed black line represents a
perfect prediction model. Significant prediction error arises
when the underlying data distribution is non-Gaussian.

Figure 6 shows that the learned uncertainty model per-
formed very well when the underlying data distribution was
Gaussian (blue curve). However, it performed poorly (off by
an order-of-magnitude) at low δ when the underlying distri-
bution was non-Gaussian. When the underlying distribution
was Gaussian with added uniform noise (orange curve),
the observed violations were much lower than the expected
violations (i.e. the model was conservative). This is good for
safety, but would clearly lead to overly conservative behavior,
especially since the model is off by orders of magnitude.

However, more concerning is the case when the underly-
ing distribution is Gaussian with non-uniform noise (green
curve). In this case, the observed violations were much
higher than the expected violations (greater by an order of

magnitude), posing a clear risk for safety-critical applica-
tions. This reinforces our results in Section 3A by illustrating
that significant prediction error inevitably arises, regardless
of the amount of training data, when the underlying data
distribution is non-Gaussian.

APPENDIX B:
QUANTILE REGRESSION (SYNTHETIC DATA)

We repeated the quantile regression experiments from
Section 3C, using synthetic 2D data rather than real-world
driving data. This allowed us to observe how well the
uncertainty model performed under ideal conditions when
the training/testing data were perfectly i.i.d. We randomly
generated 1,000,000 2D training data points (analogous to
1,000,000 trajectories) following a Gaussian distribution, and
computed δ-quantile bounds following the same procedure
described in Section 3C (i.e. computing the smallest convex
set containing 1 − δ points). We then generated 10,000,000
2D test data points following the exact same distribution
as the training data, and observed how well our computed
quantile bounds captured the test data.

Fig. 7: Prediction error vs. safety threshold, δ under com-
puted quantile bounds on synthetic 2D data. The dashed
black line represents a perfect prediction model.

Figure 7 shows the prediction error (i.e. ratio between
expected and observed proportion of trajectories outside
each quantile) versus the safety threshold δ. The quantile
regression model performed very well up to δ ≥ 0.001.
However, performance rapidly deteriorated as δ decreased,
meaning the model failed to accurately predict violation
probabilities at those safety thresholds. This is consistent
with our results in Section 3C.

Using the synthetic data, we computed the smallest accu-
rate safety threshold, δmin, as a function of the amount of
training data, N . This threshold δmin was defined as follows,

δmin = min δ such that

∣∣∣∣∣log

(
expected(δ)

observed(δ)

)∣∣∣∣∣ ≤ ε .
(8)

where we set ε = 0.5, which represents the vertical distance
between the blue curve in Fig 7 and the dotted black line.
Therefore, δmin represents the smallest δ such that our
computed quantile bounds are ε-accurate (as described in



(a)

(b)

Fig. 8: (a) Smallest accurate δ versus amount of data using
synthetic 2D data. The trend is highly linear (r2 = 0.979),
(b) Projection showing the expected amount of data required
to obtain an accurate safety threshold δmin.

Section 3C). Figure 8(a) shows the same inverse linear trend
(δmin ∝ 1

N ) on the synthetic data that was seen with the real
driving data. Figure 8(b) shows the extrapolation of this trend
towards lower δmin. This result reinforces the point made in
Section 3C that quantile regression can be very accurate for
larger δ, but it may not be feasible to collect enough data to
reach safety thresholds δmin ≤ 10−8.

APPENDIX C:
OTHER UNCERTAINTY MODELS

A. Generative Models

Generative models have garnered significant interest in
trajectory prediction for their ability to implicitly learn the
distribution A(x) = p(a|x). However, there are two sig-
nificant issues with these approaches, the first of which is
the time required to utilize these models in safety-critical
situations. For example at best, a single prediction takes
≈ 0.05s with Social-GAN [9], or ≈ 0.001s with Trajectron
[25]. In order to guarantee safety with probability δ = 0.01,
we would need to generate 100 trajectories taking > 0.1s.
To guarantee safety with probability δ = 10−8, we would

need to generate 108 trajectories taking > 100, 000s (> 1
day), which is not suitable for real-time operation. While
computational cost will surely decrease over time, it is
unclear whether this modeling approach will be feasible in
the near future.

More importantly, there are no guarantees that the uncer-
tainty distribution implicitly captured by generative models
provides any reasonable approximation to the true uncer-
tainty distribution. It has been shown – both empirically
and theoretically – that GANs can fail to learn the true
distribution (suffering from “mode collapse”), even when
their training objective nears optimality [53]. Furthermore,
the theoretical data efficiency bound described by Eq. (7)
suggests that the implicit distribution learned by such models
will be inaccurate (at the safety thresholds we are consider-
ing) without currently infeasible amounts of data.

B. Scenario Optimization Model

Scenario Optimization is an appealing approach because
(like quantile regression) it does not assume an underlying
distribution over the data [23]. It relies only on the assump-
tion that the data is drawn i.i.d. from some fixed (unknown)
distribution. Therefore, we can obtain a high-confidence
bound on the probability that a new trajectory is inside or
outside a computed tube, without strong assumptions on the
underlying distribution.

With this approach, the safety threshold, δ, is a direct
function of the amount of observed data [32]; in other words
δ = δ(N), where N is the number of training trajectories
or “samples”. Therefore, we cannot set arbitrarily small
confidence levels (e.g. δ = 10−8). While this prevents users
from applying the approach inappropriately, it requires very
large amounts of data to get to low enough confidence levels
for safety-critical applications. For example with 40, 000
trajectories, we were able to reach δ ≈ 10−4 (after this point,
computational feasibility became an issue). This suggests it is
not feasible to reach desired δ levels given realistic datasets.

Using the highD dataset and treating the trajectories in
the training set as observed samples, we obtained high-
confidence bounds (computed as the convex hull of the
training trajectories) such that new trajectories should lie
within those bounds with probability at least 1 − δ. For
example, Figure 9 shows the predicted confidence bounds
for two representative driving instances; in Fig. 9a, the goal
position is not given but in in Fig. 9b, the goal position
is given. The scenario optimization approach predicts that
the future trajectory of each car should fall within the blue
confidence bounds at 2, 4, 6 seconds in the future with 98.5%
(Fig. 9a) or 95.1% (Fig. 9b) probability.

To test the accuracy of the computed confidence bounds,
we examined how often trajectories in the test set actually
remained within those bounds in the highD dataset. The ratio
of observed violations to expected violations was smaller
than expected (i.e. the method was conservative), which is
reassuring for safety. Specifically, the observed vs. expected
percentage of violations was approximately 5% vs. 14%.



(a)

(b)

Fig. 9: Plot of confidence bounds over the car’s future
trajectory. The car’s positional history is shown by the red
circles, and training data is taken from equivalent scenarios
in the highD dataset. (a) The goal position of the car is
not known. We compute a 98.5% probability that a new
trajectory falls within the blue confidence bounds at 2, 4,
and 6 seconds in the future. (b) The target position of the
car is known. We compute a 95.1% probability that a new
trajectory falls within the blue confidence bounds at 2, 4,
and 6 seconds in the future.

However, the safety threshold δ(N) was always large
(δ ∈ [0.02, 0.41]) and unable to be arbitrarily defined, which
makes the scenario optimization approach currently inappli-
cable to many safety-critical applications. This is consistent
with our conclusion in Section 3C, that much more data is
necessary to obtain reliable, probabilistic bounds.

C. Hidden Markov Models

Rather than reasoning about uncertainty only over tra-
jectories, many methods in the POMDP literature reason
about uncertainty over discrete intentions. Most often, these
discrete intentions denote different goal positions for the
agent, but they could also denote different operational modes
(e.g. yield vs. no yield). Hidden Markov models enable us
to compute an agent’s most likely intention, which proves
useful in solving many challenging problems. However,
when guaranteeing safety with safety threshold δ, intention
must be correctly inferred with probability 1 − δ. Issues
arise when the intention must be inferred with very high
confidence δ ≤ 10−8.

(a) Data for each mode generated from a Gaussian distribution.

(b) Data for each mode generated from a uniform distribution.

Fig. 10: Synthetic data is generated from two different
modes: (mode 1 – blue, mode 2 – red). The confidence
intervals below denote where a point would have to lie in
order to classify it, with confidence δ = 10−8, as coming
from either mode 1 or mode 2. For example, if a new
point falls in the interval covered by the blue bar, it can be
classified as coming from mode 1 with confidence δ ≤ 10−8.
If it falls anywhere in the gray interval, we cannot conclude
its mode (assuming a uniform prior).

We demonstrate this on a 1D toy problem with synthetic
data. We generated 1000 i.i.d. data points from two distinct
distributions (mode 1 and mode 2), and computed the best
fit Gaussian for each of these distributions. Note that our
results did not change when increasing the amount of data.
We then computed the intervals in which a new point would
have to lie in order for us to classify it in either mode 1 or
mode 2 with 1 − δ confidence. This was done by applying
Bayes rule, assuming a uniform prior over the modes,

P(mode | x) =
P(x | mode) P(mode)

P(x)
. (9)

Figure 10 shows these intervals when the points were
generated from either a Gaussian distribution, or a uniform
distribution. The interval covered by the gray line denotes
the interval in which we can not classify (with δ confidence)



a point’s mode. We note that the gray line extends across
a significant portion of the data range, but is reasonable
when the underlying distribution of points in each mode
is perfectly Gaussian. However, when the generated data is
uniformly random, the uncertainty interval stretches across
the entire range of data. This suggests that inferring intention
or hidden “modes” under uncertainty will often be infeasible
when considering very low safety thresholds, δ, especially
since we have shown that human behavioral variation is non-
Gaussian. Furthermore, we cannot compensate for this non-
Gaussian variation as we do not have accurate knowledge of
the true distribution.


