
Learning an Optimal Sampling Distribution for Efficient Motion Planning

Richard Cheng1, Krishna Shankar2, and Joel W. Burdick1

1California Institute of Technology
2Toyota Research Institute

Abstract— Sampling-based motion planners (SBMP) are
commonly used to generate motion plans by incrementally
constructing a search tree through a robot’s configuration
space. For high degree-of-freedom systems, sampling is often
done in a lower-dimensional space, with a steering function
responsible for local planning in the higher-dimensional con-
figuration space. However, for highly-redundant sytems with
complex kinematics, this approach is problematic due to the
high computational cost of evaluating the steering function,
especially in cluttered environments. Therefore, having an
efficient, informed sampler becomes critical to online robot
operation. In this study, we develop a learning-based approach
with policy improvement to compute an optimal sampling distri-
bution for use in SBMPs. Motivated by the challenge of whole-
body planning for a 31 degree-of-freedom mobile robot built by
the Toyota Research Institute, we combine our learning-based
approach with classical graph-search to obtain a constrained
sampling distribution. Over multiple learning iterations, the
algorithm learns a probability distribution weighting areas
of low-cost and high probability of success, which a graph
search algorithm then uses to obtain an optimal sampling
distribution for the robot. On challenging motion planning tasks
for the robot, we observe significant computational speed-up,
fewer edge evaluations, and more efficient paths with minimal
computational overhead. We show the efficacy of our approach
with a number of experiments in whole-body motion planning.

I. INTRODUCTION

Sampling-based motion planners (SBMP) have been very
successful in robotic systems, because they can provide
collision free paths in complex environments. SBMPs (e.g.
Probabilistic Roadmaps, RRT, etc.) operate directly on the
continuous domain, and randomly sample points to find a
path from start to goal [1]. These search algorithms are
probabilistically complete (i.e. probability of successfully
finding a path approaches one as number of samples ap-
proaches infinity – assuming a solution exists). However,
the computational complexity of these algorithms grows
greatly with the planning dimension, and problems become
intractable for highly redundant systems with many degrees-
of-freedom (DoF). Therefore, efficiently planning motion
remains a challenging problem for high degree-of-freedom,
highly redundant mobile robots.

For such robots, a standard approach is to plan the
end-effector trajectory in lower-dimensional Cartesian end-
effector space, and use an optimization-based dynamic plan-
ner as a steering function between sampled points [2]–[4].
In this way, the start/end position of the end-effector can
be easily specified, and much of the work for the SBMP
is offloaded to a local optimizer [5]. However, this also

Fig. 1: The general purpose mobile manipulation robot
(described in [4]), which consists of a wheeled chassis, torso,
left arm, right arm, and head, with a total of 31 DoF. The
robot is shown here retrieving an item from a refrigerator, in
a home.

means that edge evaluation (planning between two sampled
points through a steering function) in the SBMP becomes
less predictable, and significantly more expensive; in most
cases it is already the most expensive part of the motion
planning process [6]. Thus, random sampling will make the
planning problem intractable, and it is important to sample
intelligently and efficiently.

In this work, we are motivated by whole-body motion
planning for the highly redundant, 31 DoF robot shown
in Fig. 1 [4]. To improve motion planning, we develop an
algorithm that learns an optimal sampling distribution for an
SBMP through policy improvement. This allows the robot to
leverage prior experiences to guide sampling, such that im-
proved search trees (e.g. RRT) can be constructed efficiently
for path planning. Since we assume an optimization-based
planner as the steering function in our SBMP, we consider
the case where edge evaluation is extremely expensive and
the shortest path (in Cartesian distance) is not necessarily
optimal or feasible.

The contributions of this work include:
• Developing a learning algorithm that provides an im-

plicit sampling distribution for efficiently sampling

good, low-cost points,
• Proving convergence of the algorithm to a locally opti-

mal sampling distribution through policy improvement
as more training instances are gathered,

• Achieving significantly lower computation time and
joint motion when utilizing the learned distribution on
a 31 DoF, highly-redundant mobile robot.

We will refer to the implicit sampling distribution as the
heuristic, and will use the two terms interchangeably. The
learned heuristic is easily interpretable as it gives an intuitive
mapping from regions in Cartesian space to path probabili-
ties.

The paper is structured as follows. Section III examines
our framework for learning a baseline heuristic and imple-
menting policy improvement on that heuristic. Section IV
demonstrates our approach on a 2D navigation problem.
Section V then details how we combine our learned heuristic
with an A* planner for utilization on the mobile robot.

II. RELATED WORK

Graph search algorithms (e.g. A*) are guaranteed to find
an optimal path from start to goal, relative to the edge
weights in the graph, with a chosen discretization (assuming
an admissible heuristic) [7]. However, the performance is
limited by the discretization, and obtaining the right edge
weights may be unintuitive depending on the search space.
Some works have looked at transferring concepts from graph
search algorithms to sampling-based motion planners [8], [9].

SBMPs operate directly on the continuous domain and find
a path from start to goal by randomly sampling points and
constructing a search tree. Certain sampling-based planners
(e.g. RRT*, BIT*) are asymptotically optimal, converging
to the optimal solution (i.e. path) as the number of sampled
points approach infinity [9], [10]. However, such convergence
can be prohibitively slow, grows exponentially in the dimen-
sion, and depends heavily on the heuristic used to sample
points [6]. The standard RRT uses a uniform sampling of
the state space, while other works have used goal-biased
heuristics and/or other sampling heuristics to improve so-
lution quality and search speed [11]–[14]. Some works have
shown efficient ways to improve paths by constraining the
sampling space once an initial solution has been found [9],
[15], and using local optimizers to guide edges [5]. Given the
expensive local optimization in our problem, we require more
carefully guided sampling, even before any initial solution
has been found.

The importance of a good sampling distribution (i.e.
heuristic) is well-known, and recent work has studied differ-
ent approaches for learning one [16]–[19]. [20], [21]. [22] di-
rectly generate samples end-to-end using neural networks (or
recurrent neural network [23]). [24] learns a low-dimensional
latent space (with a collision-checker) for high-dimensional
planning problems to improve planning efficiency. However,
these works learn from an expert demonstrator without
improving upon the demonstrations. Rather than focusing on
learning a sampling function, [25]–[27] examine the problem

of determining which edges to evaluate in the tree to avoid
expensive edge evaluations.

To allow learning of more optimal sampling distributions,
[28], [29] use policy-gradient based reinforcement learning
(RL) to learn an implicit sampling distribution (i.e. whether
to accept or reject a sample) to guide an RRT. [30] similarly
uses policy-gradient RL, but uses it to learn a local controller
and a distance (i.e. cost) function between nodes. While
policy-gradient RL methods have successfully solved many
problems by modeling the learning problem as a Markov
Decision Process, they suffer from significant learning vari-
ability and instability due to high variance in estimated
policy gradients [31]. We formulate learning as a simpler
classification problem, giving us greater stability (and in this
case interpretability) in learning.

It is also worth mentioning a separate class of motion
planners based on the notion of trajectory optimization.
These planners are optimization-based (rather than sampling
based), and are able to obtain smooth, low-cost trajectories,
but they similarly face issues of scalability and susceptibility
to local minima [32]–[35].

III. LEARNING A SAMPLING DISTRIBUTION

In this section, we describe how we learn an optimal
sampling function through iterative policy improvement. In
Section III.A, we examine how to obtain a baseline sampling
distribution from a collection of observed (suboptimal) paths.
This is in the same vein as [20], though we learn an im-
plicit sampling distribution rather than explicitly generating
samples. In Section III.B, we describe the iterative policy
improvement step, outline the learning algorithm, and prove
that it converges to a locally optimal sampling distribution.

A. Supervised Learning of Baseline Sampling Distribution

Since the performance of sampling-based motion planners
depends heavily on the sampling of the search space, our
goal is to learn an implicit sampling distribution based on
prior (simulated or real) experiences.

To do this, we first discretize the search space into voxels,
each voxel holding a value between (0, 1] representing the
probability of that voxel being along a successful path. This
provides us with a baseline heuristic (probability of accepting
a sample within each voxel) to use for RRT exploration.

The heuristic is represented by a learned neural-network
function fθ : S → Asamp, which induces a distribution over
paths. The input s ∈ S represents the important aspects of
the robot state and environment, and the “action” asamp ∈
Asamp is an m x m x m grid with each value representing
the probability of accepting a sample from the given voxel.
Our algorithm learns the function asamp = fθ(s) from the
aggregated map data, which gives us our sampling heuristic
for the RRT. Let us also define a ∈ A (distinct from asamp ∈
Asamp) which represents a continuous path from start to
goal. Then we can say that the heuristic asamp = fθ(s)
induces a distribution over paths, π(a|s), from start to goal.

We use sigmoid cross-entropy loss to learn the sampling
heuristic fθ from our training dataset, which consists of RRT

paths (sampling in Cartesian space, and steering using the
algorithm described in [4], [36]) in randomized represen-
tative environments. Minimizing this loss is equivalent to
minimizing the KL−divergence between our probabilistic
sampling distribution, and the paths in the training set.

Intuitively, the heuristic looks at the paths that have
succeeded previously to inform it on the probability of new
paths to succeed. Therefore, it improves RRT search speeds
by guiding sampling towards high-success regions. However,
this heuristic does not take into account the cost of the paths
– only their validity – and does not contain a mechanism
for policy improvement. We will refer to this sampling
distribution as the baseline heuristic.

B. Policy Improvement to Optimize Sampling Distribution

Suppose we obtain the baseline sampling distribution
π(a|s) (arising from asamp = f(s)), which gives a distribu-
tion over paths, trained on successful paths it has seen (with
no regard for the cost/reward of those paths). Let h(r(a)|s)
be any bounded function that is an increasing function of
reward. Then we can prove the following lemma.

Lemma 1.

J(s) =

∫
a

r(a)π(a|s, θ)δa ≤
∫
a

r(a)
π(a|s, θ) · h(r(a)|s)

Z(s)
δa

(1)
where Z(s) is a normalization factor such that
π(a|s,θ)·h(r(a)|s)

Z(s) is a probability distribution.

Proof: We use the following inequality, which holds if
f and g are bounded, non-decreasing functions of the random
variable r.

E[f(r)g(r)] ≥ E[f(r)]E[g(r)] (2)

The policy π(a|s) gives a distribution over paths, and there
is a direct mapping from these paths, a to reward, r. Let
f := I be the identity function, and as discussed above, let
g := h(r(a)|s)

Z(s) be an increasing function of r. Then given the
distribution π(a|s), we have the following,

Eπ[f(r)] = Eπ[r] =

∫
r(a) π(a|s)δa

Eπ[g(r)] =

∫
h(r(a)|s)
Z(s)

π(a|s)δa = 1

Eπ[f(r)g(r)] =

∫
r(a)

h(r(a)|s)
Z(s)

π(a|s)δa

(3)

From Equation (2), it directly follows that the following
inequality holds,∫

r(a)
h(r(a)|s)
Z(s)

π(a|s)δa ≥
∫
r(a) π(a|s)δa (4)

Thus, given a baseline policy, we can increase the expected
reward of the policy by modifying the distribution using the
function h. We cannot say anything about how much we
increase the expected reward. However, we can iteratively
update our sampling distribution over learning episodes.
Algorithm 1 illustrates how we can leverage h(r|s) to learn

an improving policy. In the algorithm, M,K are hyperparam-
eters of the algorithm, N is the number of training episodes,
and R is the sampled reward grid (i.e. the reward associated
with each voxel). Note that we cannot just continually apply
h without running the RRT to gather new training paths,
because the new sampling distribution might not give us valid
paths from start to goal.

Algorithm 1 Learning Heuristic with Policy Improvement

1: Import heuristic f0 : S → Asamp, which induces a path
distribution π0(a|s)

2: Collect the K datasets (i.e. groups of training examples)
used to train the heuristic

3: for i do = 1,..,N
4: Use sampling heuristic πi−1(a|s)·h(a|s)

Z(s) to run M
iterations of the RRT

5: Store estimate of h in state-reward grid pairs (s, R)
6: Store the M state-path pairs (s, a) in a new group of

training examples
7: Discard the oldest group of training examples (i.e.

keep rolling record of improving paths)
8: Train heuristic πi(a|s) on last K training examples
9: end for

Theorem 1. Given a bounded reward function, Algorithm 1
converges to a locally optimal sampling distribution.

Proof: It follows directly from Equation 1 that
Eπi

[r|s] ≥ Eπi−1
[r|s], since the former is trained also

on paths from the modified distribution. By the Monotone
Convergence theorem, if a monotone sequence of real num-
bers is bounded, then it has a finite limit. E[r|s] is clearly
bounded, since we have defined the reward to be bounded.
Therefore, we are guaranteed to converge to the following
limit limi→∞ Eπi

[r|s] = ropt(s).

Furthermore, since πi is trained on only successful paths
ρi from start to goal, it gives a distribution over successful
paths. We will refer to the learned sampling distribution after
policy improvement as the reinforced heuristic.

IV. SAMPLING DISTRIBUTION IN 2-DIMENSIONAL
DOMAIN

We first illustrate the method using a 2-dimensional prob-
lem where a point robot (no dynamics) uses an RRT to find
a path from start to goal in a randomly generated obstacle
map. In addition, we define a randomly generated, static cost
map that induces a cost over every path.

The state s is an n x n occupancy grid capturing the
obstacle map with the start/goal position annotated. The
sampling heuristic fsamp is a ResNet-18 convolutional neural
network [37] that takes this occupancy grid as its input, and
outputs a probability heatmap over an m x m grid. The value
of each voxel in the heatmap represents the probability of
accepting a sample from that voxel.

Figure 2 shows the learned baseline heuristic, which is
trained on paths generated by an RRT over several randomly

generated obstacle maps. The baseline heuristic encourages
sampling in unobstructed regions along the path from start
to goal. However, there is no sense of “cost” in this setting.

(a)

(b)

Fig. 2: Baseline sampling heuristic on two different example
obstacle maps. The heuristic encourages sampling in unob-
structed regions from the start to goal.

A sense of cost is introduced through the “Cost Map”,
as shown in Figure 3. Regions in yellow in the cost map
are regions of high cost that the planner should learn to
avoid, as described in the previous section. Algorithm 1 is
run to continually improve the baseline heuristic such that
it incorporates this cost landscape. Over time, the reinforced
heuristic is successful in encouraging the motion planner to
avoid high-cost regions.

It should be noted that by thresholding the sampling proba-
bility to a value greater than 0, we maintain the completeness
property of the RRT. Therefore, in cases where the sampling
distribution is not effective in providing a good bias towards
low-cost, valid paths, we can still ensure that we will find
a path in these cases (as the number of sampled points
approaches infinity).

To provide a quantitative analysis, the table below shows
the performance of the RRT using (a) uniform random
sampling with goal bias, (b) the learned baseline heuristic
(Section III.A), or (c) the reinforced heuristic (Section III.B).
Results were averaged over 1000 trials in different random-
ized environments with randomized start/goal positions. For
fair comparison, the same 1000 environments and start/goal
positions were used for testing each of the three heuristics.

We note that the path cost was lowest using the reinforced
heuristic, while the baseline heuristic and no heuristic cases
performed similarly (this is expected since the baseline
heuristic does not consider the cost landscape in its ex-
ploration). More importantly, we observe that using the
reinforced heuristic or baseline heuristic leads to significantly
fewer sampled points (and therefore fewer edge evaluations)
before reaching the goal. Therefore, using the reinforced

(a)

(b)

Fig. 3: Reinforced sampling heuristic (right) vs baseline
sampling heuristic (second from right) after training with
cost information (second from left). The cost map penalizes
traversing certain regions with a high cost, and imposes a
low cost on other regions. The reinforced sampling heuristic
not only avoids obstacles, but encourages the motion planner
to avoid high-cost regions of the map when doing so.

RRT w/
goal bias

Baseline
Heuristic

Reinforced
Heuristic

Path Cost 1670 1640 1540

Edge Evals 173 118 111

Edge Evals
(normalized)

0.85 0.62 0.59

TABLE I: Mean statistics of the RRT’s performance over
1000 trials in different randomized environments. For fair
comparison, each of the 3 methods was run across the same
1000 randomized environments. (Top) Average cost of each
path found by the RRT. (Middle) Average edge evaluations
until a path was found, (Bottom) Average edge evaluations,
with each trial normalized to the max number of evaluations
across the 3 methods (value of 1.0 implies that method had
the most edge evaluations every time).

heuristic described in Section III.B gives us, on average,
lower-cost paths with fewer edge evaluations compared to
the baseline learned heuristic or no heuristic (with goal bias).

V. LEARNED SAMPLING DISTRIBUTION ON ROBOTIC
PLATFORM

The system that motivates this study is more complex than
that described in section IV – the 31 degree-of-freedom,
highly-redundant two-armed robot shown in Figure 1 [4].
The objective is to plan whole-body motion of the robot to
move the end-effector from a start to goal position specified

Fig. 4: Pipeline used to generate sampling heuristic. (a) The robot perceives the environment and constructs a voxel map. (b)
Voxel map and sensors are used to get the robot state. (c) Robot state is fed through the trained neural network (described
in Section V.A) to obtain the learned heuristic (i.e. probability heatmap) in the robot’s end-effector space. (d-e) To further
boost sample efficiency, the inverse of these probabilities are used as edge costs in a graph of the discretized end-effector
space, and the A* search algorithm finds the lowest cost path in the graph from start to goal (i.e. blue voxels). (f) The RRT
draws points from these sampling regions, with the green dots showing sampled points along a successful path.

in Cartesian, 6-DoF space. While planning the end-effector
position, we must account for the kinematics/dynamics of the
robot. The optimality/feasibility of a given path depends on
not just distance in the end-effector space, but the path (arc-
length) traveled by all 31 joints. Therefore, the objective is
to learn a sampling distribution in the 3D end-effector space
that implicitly accounts for the kinematics of the full robot
as well as the motion of all its joints.

We utilize a sampling-based planning algorithm (QP-RRT)
to plan a valid path for the end-effector in 3D Cartesian
space from a start position to goal position [4]. Each edge
between two points of the RRT is evaluated using a quadratic
program (QP), which solves for the robot’s inverse kinemat-
ics to move the end-effector with collision checking [36].
Once the RRT returns a valid path, the plan is executed by
running the QP on each of the edges of the final path.

Because of the large number of collisions that must be
checked and the high redundancy of the robot, each edge
evaluation of the RRT is expensive (can take ≈ 0.5s for a
single edge evaluation in cluttered environments). Therefore
intelligent sampling is crucial to minimize the number
of edge evaluations required to go from start to goal,
since practically the RRT should use no more than 60 edge
evaluations in its search.

The learned sampling distribution is not only necessary to
efficiently find successful paths from start to goal, but also
encourages greater optimality of discovered paths. Note that

optimal SBMP algorithms (e.g. RRT*, BIT*) rely on addi-
tional edge evaluations to rewire the search graph. Because
these edge evaluations are expensive, they further aggravate
the existing issues of computation time and highlight the
desire for optimal samples that will minimize joint motion.

A. Problem Setup

We define the input space S := R64x64x64x2, which repre-
sents a 3D voxel map with 2 channels. One channel encodes
the state of the robot and the start/goal position of the end-
effector, and the other channel represents an occupancy grid
of the surrounding environment. Each input voxel measures
4cm3. The output space is defined as Asamp := R10x10x10,
representing a voxel map that encodes the probability of a
good solution path passing through each voxel. Each output
voxel measures 16cm, for a total workspace measuring 1.6m.
The goal of the trained neural network is to learn a mapping
fsamp : S → Asamp that will allow us to identify promising
regions of the action space to sample.

Neural Network Architecture: The neural network fsamp
takes the two channels of the 3D voxel map (each of dimen-
sion R64x64x64) and feeds each into a ResNet-18 network
with ReLu activation functions [37] (stride lengths were
reduced to obtain desired output dimensions). The output
is two 3D feature maps, each of size R16x16x256. A max
pooling layer over the channel depth is added before the two
channels are concatenated, resulting in a combined feature

Fig. 5: Visualization of the robot planning with and without the learned heuristic. The top row shows visualizations for
planning in the Refrigerator environment, while the bottom row shows visualizations for planning in the Laundry environment.
(a) Image of the planning environment that the robot sees. (b) Path found by the RRT (green dots) without the learned
heuristic. (c) Path found by the RRT with the learned heuristic. Green dots represent the RRT path, while blue spheres
represent the regions that the RRT is constrained to sample within.

map of size R16x16x64x2. This feature map is then fed through
four 3D convolutional layers with linear activation functions
(i.e. pass-through). The first 3D convolutional layers utilizes
a 5x5x5 kernel with a [1, 1, 4] stride; the last three 3D
convolutional layers utilize a 3x3x3 kernel with no edge
padding. Therefore, the final convolutional layer provides the
desired output a ∈ Asamp = R10x10x10. Figure 4(c) provides
a simplified illustration of this architecture. This network
architecture enables fast inference over the high-dimensional
state space (≈ 50 ms inference).

We gather training data by generating both purely random
environments and random representative environments (e.g.
random cabinets and tables), and then running the QP-RRT
with the simulated robot on those environments. Note that
time is not encoded in the output, so the resulting plan does
not consider this.

Algorithm 2 describes the learning algorithm for the robot
motion planning system. It differs from Algorithm 1 mainly
in that it considers that we do not have access to h(a|s) and
therefore cannot leverage it to improve exploration. For the
baseline heuristic, we set j = 1 and disregard r.

B. Combining Learned Probabilities with A* Search

Sampling directly using the learned probabilities allows
us to maintain completeness and is ideal in many cases.
However, because of the very limited sample budget in
our target application, sampling directly from the learned
distribution is still not efficient enough.

We must further narrow down the search space, which is
achieved by using our learned sampling distribution (giving
us probabilities for successful paths), and utilizing the inverse
of the sampling probabilities as edge costs in a graph.
Transitions to occupied voxels are given infinite cost in this
graph. Once we construct a graph using edge weights from
the neural network, we then run a graph search algorithm
(i.e. A*) on the constructed graph. This gives us the highest
probability voxel path from the start to goal. Sampling from
the voxels in this path gives us the highest probability of
finding a low-cost path under our sampling heuristic.

While restricting the sampling area of the RRT to these
areas eliminates the completeness property of the RRT, it
is a necessary trade-off to remain within our limited sample
budget. The next subsection will show that this tradeoff leads
to significantly better performance. Figure 4 summarizes the

Algorithm 2 Learning Heuristic for Robot Sampling

1: Import heuristic f0 : S → Asamp, which induces a path
distribution π0(a|s)

2: for i = 0,...,N do
3: Initialize robot/environment and start/goal (si ∼ S)
4: Populate robot state in voxel map si
5: Initialize RRT with start position x0 of the end-

effector
6: for j = 1,...,M do
7: while Solution not found do
8: Sample point xp using heuristic fi(si)
9: Look for solution from current tree τ to xp

by looking at closest K points (yp,k) between τ and xp
and evaluating QP between them.

10: Compute rp,k = ‖∆θ‖2
11: end while
12: Create output grid asampj based on resulting path
13: Compute reward of the resulting path, rpj
14: end for
15: Store the best state-output pairs (S, asampi , rpi) based

on the highest reward rp.
16: Train heuristic fi(a|s) on the last K stored records
17: end for

pipeline used to generate our sampling heuristic once it has
been learned.

C. Experiments

To test the robot, we drive the robot to different household
objects (e.g. desk, cabinet, etc...) extract the state of the robot
and the voxel map [4], and construct the state representation
to feed to the neural network. We then compute the sampling
heuristic and simulate ten robot motion plans (i.e. running the
QP-RRT ten times with and without the learned heuristic).
Because of the random nature of the RRT, results will be
different across trials. Statistics across ten trials for five
different environments (50 trials total) are shown in the tables
below. We see significant improvements in computation time
and decrease in joint-space arc-length across scenarios.

Furthermore, arc-length and compute time statistics are
shown across ten successful trials whereas failures (i.e.
timeouts) are ignored in the statistics. These failures due to
timeout are common when not using the learned heuristic
as seen in the last table below, which shows the number
of timeouts experienced before achieving 10 successful tri-
als. Therefore, not only does the learned heuristic improve
performance when comparing only successful cases, it also
achieves significantly greater success rates than the original
QP-RRT.

Note that improvements are smaller on the Table environ-
ment. This is because the table task has few obstacles, and
it is much easier for the base RRT to plan in.

Figures 5 visualize the points in the RRT path both with
and without the learned heuristic in two real environments.
The top image in each figure shows the true environment, the
middle image shows the baseline RRT-planned path (in green

Environment Compute time
(Learned
Heuristic)

Compute time
(No Heuristic)

Desk 8.7± 2.2 s 33.0± 9.0 s

Cabinet 9.5± 2.8 s 13.7± 6.8 s

Laundry 8.9± 2.6 s 34.5± 5.9 s

Refrigerator 5.8± 1.9 s 23.1± 8.0 s

Table 3.0± 1.7 s 4.0± 0.4 s

Environment Arc-Length
(Learned
Heuristic)

Arc-Length
(No Heuristic)

Desk 12.4± 1.1 rad 21.0± 4.6 rad

Cabinet 17.7± 2.7 rad 15.7± 2.0 rad

Laundry 15.5± 1.3 rad 20.6± 4.2 rad

Refrigerator 11.5± 1.7 rad 22.7± 3.6 rad

Table 18.3± 0.8 rad 23.8± 1.5 rad

Environment Failures
(Learned
Heuristic)

Failures
(No Heuristic)

Desk 0 9

Cabinet 1 4

Laundry 1 18

Refrigerator 1 12

Table 0 0

TABLE II: Performance statistics for the RRT, with and
without the learned heuristic, across 10 repeated trials in 5
different environments. (Top Table) Mean±SD computation
time before RRT returned a solution, given that it succeeded.
(Middle Table) Average joint space path length of the re-
turned solution. Denotes the total radians traveled by all the
joints. (Bottom Table) Number of times the RRT failed before
completing 10 successful trials.

dots) without the learned heuristic, and the bottom image
shows the RRT-planned path with the learned heuristic (blue
spheres represent the sampling regions for the RRT). We see
that without the heuristic, the RRT often takes odd paths
because the search is more random through the end-effector
space, whereas the heuristic constrains sampling along a
more natural path from the start to goal. Note that the learned
heuristic could similarly be used in conjunction with optimal
variants that do some kind of pruning (e.g. RRT*), though
this would impose significant cost in terms of additional edge
evaluations.

VI. CONCLUSION

Whole-body motion planning is a challenging problem
for high degree-of-freedom, redundant mobile manipulators
in the real-world. Sampling-based motion planners with
complex steering functions can often fail for such robots
due to the expensive computations required for RRT edge
evaluations. Therefore, it is important to efficiently utilize the
limited number of nodes that can be explored. The learning-
based sampling distribution presented here allows us to plan
whole-body motions for a high degree-of-freedom mobile
robot in challenging environments consistently with signif-
icantly lower computation time and minimal joint motion.
Furthermore, the learned distribution is easily interpretable as
it gives an intuitive mapping from regions in space to success
probabilities. We intend to extend this work by exploring
alternative input modalities (e.g. stereo imagery instead of
voxel map), and closed-loop execution to handle dynamic
obstacles.

REFERENCES

[1] S. M. LaValle, Planning algorithms, 2006.
[2] B. W. Satzinger, J. I. Reid, M. Bajracharya, P. Hebert, and K. Byl,

“More solutions means more problems: Resolving kinematic redun-
dancy in robot locomotion on complex terrain,” in IEEE International
Conference on Intelligent Robots and Systems, 2014.

[3] P. Hebert, M. Bajracharya, J. Ma, N. Hudson, A. Aydemir, J. Reid,
C. Bergh, J. Borders, M. Frost, M. Hagman, J. Leichty, P. Backes,
B. Kennedy, P. Karplus, B. Satzinger, K. Byl, K. Shankar, and
J. Burdick, “Mobile manipulation and mobility as manipulation -
Design and algorithms of RoboSimian,” Journal of Field Robotics,
2015.

[4] M. Bajracharya, J. Borders, D. Helmick, T. Kollar, M. Laskey, J. Le-
ichty, U. Ma, Jeremy Nagarajan, A. Ochiai, J. Petersen, K. Shankar,
K. Stone, and Y. Takaoka, “A Mobile Manipulation System for One-
Shot Teaching of ComplexTasks in Homes,” in IEEE International
Conference on Robotics and Automation, 2020.

[5] S. Choudhury, J. D. Gammell, T. D. Barfoot, S. S. Srinivasa, and
S. Scherer, “Regionally accelerated batch informed trees (RABIT): A
framework to integrate local information into optimal path planning,”
in Proceedings - IEEE International Conference on Robotics and
Automation, 2016.

[6] K. Hauser, “Lazy collision checking in asymptotically-optimal mo-
tion planning,” in Proceedings - IEEE International Conference on
Robotics and Automation, 2015.

[7] P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for the
Heuristic Determination of Minimum Cost Paths,” IEEE Transactions
on Systems Science and Cybernetics, 1968.

[8] S. M. Persson and I. Sharf, “Sampling-based A algorithm for robot
path-planning,” International Journal of Robotics Research, 2014.

[9] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “BIT *: Batch
Informed Trees for Optimal Sampling-based Planning via Dynamic
Programming on Implicit Random Geometric Graphs,” CoRR, 2015.

[10] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” in International Journal of Robotics Research, 2011.

[11] S. M. LaValle, “Rapidly-Exploring Random Trees: A New Tool for
Path Planning,” In, 1998.

[12] J. J. Kuffner and S. M. La Valle, “RRT-connect: an efficient approach
to single-query path planning,” in Proceedings - IEEE International
Conference on Robotics and Automation, 2000.

[13] C. Urmson and R. Simmons, “Approaches for Heuristically Biasing
RRT Growth,” in IEEE International Conference on Intelligent Robots
and Systems, 2003.

[14] A. H. Qureshi, S. Mumtaz, K. F. Iqbal, B. Ali, Y. Ayaz, F. Ahmed,
M. S. Muhammad, O. Hasan, W. Y. Kim, and M. Ra, “Adaptive Poten-
tial guided directional-RRT,” in 2013 IEEE International Conference
on Robotics and Biomimetics, ROBIO 2013, 2013.

[15] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Informed RRT:
Optimal sampling-based path planning focused via direct sampling of
an admissible ellipsoidal heuristic,” in IEEE International Conference
on Intelligent Robots and Systems, 2014.

[16] Y. Li, R. Cui, Z. Li, and D. Xu, “Neural Network Approximation
Based Near-Optimal Motion Planning with Kinodynamic Constraints
Using RRT,” IEEE Transactions on Industrial Electronics, 2018.

[17] P. Lehner and A. Albu-Schaffer, “The Repetition Roadmap for Repet-
itive Constrained Motion Planning,” IEEE Robotics and Automation
Letters, 2018.

[18] M. Bhardwaj, S. Choudhury, and S. Scherer, “Learning heuristic search
via imitation,” in International Conference on Robot Learning, 2017.

[19] T. Takahashi, H. Sun, D. Tian, and Y. Wang, “Learning Heuristic Func-
tions for Mobile Robot PathPlanning Using Deep Neural Networks,”
in International Conference on Automated Planning and Scheduling,
2019.

[20] A. H. Qureshi, A. Simeonov, M. J. Bency, and M. C. Yip, “Motion
planning networks,” in Proceedings - IEEE International Conference
on Robotics and Automation, 2019.

[21] A. H. Qureshi, Y. Miao, A. Simeonov, and M. C. Yip, “Motion
Planning Networks: Bridging the Gap Between Learning-based and
Classical Motion Planners,” arXiv, 2019.

[22] B. Ichter, J. Harrison, and M. Pavone, “Learning Sampling Distribu-
tions for Robot Motion Planning,” in Proceedings - IEEE International
Conference on Robotics and Automation, 2018.

[23] M. J. Bency, A. H. Qureshi, and M. C. Yip, “Neural Path Planning:
Fixed Time, Near-Optimal Path Generation via Oracle Imitation,”
2020.

[24] B. Ichter and M. Pavone, “Robot Motion Planning in Learned Latent
Spaces,” IEEE Robotics and Automation Letters, 2019.

[25] C. M. Dellin and S. S. Srinivasa, “A unifying formalism for shortest
path problems with expensive edge evaluations via lazy best-first
search over paths with edge selectors,” in Proceedings International
Conference on Automated Planning and Scheduling, ICAPS, 2016.

[26] N. Haghtalab, S. Mackenzie, A. D. Procaccia, O. Salzman, and S. S.
Srinivasa, “The provable virtue of laziness in motion planning,” in
Proceedings International Conference on Automated Planning and
Scheduling, ICAPS, 2018.

[27] M. Bhardwaj, S. Choudhury, B. Boots, and S. S. Srinivasa, “Leverag-
ing Experience in Lazy Search,” arXiv, 2019.

[28] M. Zucker, J. Kuffner, and J. A. Bagnell, “Adaptive workspace biasing
for sampling-based planners,” in Proceedings - IEEE International
Conference on Robotics and Automation, 2008.

[29] C. Zhang, J. Huh, and D. D. Lee, “Learning Implicit Sampling
Distributions for Motion Planning,” in IEEE International Conference
on Intelligent Robots and Systems, 2018.

[30] H. T. L. Chiang, J. Hsu, M. Fiser, L. Tapia, and A. Faust, “RL-RRT:
Kinodynamic Motion Planning via Learning Reachability Estimators
from RL Policies,” IEEE Robotics and Automation Letters, 2019.

[31] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and
D. Meger, “Deep reinforcement learning that matters,” in 32nd AAAI
Conference on Artificial Intelligence, AAAI 2018, 2018.

[32] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “CHOMP:
Gradient optimization techniques for efficient motion planning,” 2009.

[33] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“STOMP: Stochastic trajectory optimization for motion planning,”
in Proceedings - IEEE International Conference on Robotics and
Automation, 2011.

[34] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith,
C. M. Dellin, J. A. Bagnell, and S. S. Srinivasa, “CHOMP: Covariant
Hamiltonian optimization for motion planning,” International Journal
of Robotics Research, 2013.

[35] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan,
S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential
convex optimization and convex collision checking,” International
Journal of Robotics Research, 2014.

[36] K. Shankar, J. W. Burdick, and N. H. Hudson, “A quadratic program-
ming approach to quasi-static whole-body manipulation,” in Springer
Tracts in Advanced Robotics, 2015.

[37] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 2016.

