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Abstract— Spinal cord stimulation (SCS) has recently en-
abled humans with motor complete spinal cord injury (SCI) to
independently stand and recover some lost autonomic function.
However, the nature of the recovered motor activity and
the interplay between SCS and motor training are not well
understood. Understanding the effect of stand training and
spinal stimulation on motor activity during bipedal standing
is important for designing spinal rehabilitation therapies that
seek to combine spinal stimulation and rehabilitative robots.
In this study, we examined electromyography (EMG) data
gathered from two SCI patients and six healthy subjects as they
attempted standing. We analyzed the muscle activation patterns
and EMG waveform shape to quantify both the changes in
SCI patient motor activity with training, and the differences
between healthy motor activity and SCI patient motor activity
under stimulation. We also looked for correlations between the
similarity in SCI patients’ motor activity to healthy subjects and
their overall standing ability. We found that good standing in
SCI patients does not emulate healthy standing muscle activity.
Furthermore, patient stand training heavily influenced motor
activation patterns, but not in ways that improved standing
ability. These results indicate that current training techniques
do not optimally influence motor activity, and robotic rehabilita-
tion strategies for SCI patients should target essential features
of motor activity to optimize functional performance, rather
than emulate healthy activity.

I. INTRODUCTION

Spinal Cord Injury (SCI) is a debilitating condition that af-
flicts ∼350,000 people in the U.S., and 5 million worldwide.
Complete SCI leads to full paralysis, with no voluntary motor
control, below the level of the injury. However, electrical
spinal stimulation, using multi-electrode arrays implanted
over the lumbosacral spinal cord (see Fig. 1), has enabled
complete, paralyzed SCI patients to achieve independent
weight bearing standing, some weight-assisted stepping, and
partial recovery of lost autonomic function [1], [2]. Pre-
liminary studies have shown that proper physical therapy
should be combined with spinal stimulation to achieve better
recovery [3]. Surface electromyographic (EMG) recordings
obtained during therapy sessions play a valuable role in
understanding patient progress under spinal stimulation, and
recent results have shown that SCI patient standing ability
can be accurately predicted based on EMG features [4].
However, little is known about the effects of robotic training
on the EMG activity of complete SCI patients under spinal
stimulation. A better physiological understanding of these
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effects can offer guidance on the design of rehabilitation
robots by informing us on optimal ways to guide EMG
activity.

This paper presents the first study analyzing the effect of
stand training on EMG activity of complete SCI patients,
and comparing EMG signals in spinally stimulated SCI
patients with those of healthy subjects. An understanding
of their differences as well as the factors that do and do
not contribute to good standing in SCI patients will allow
us to better design spinal stimulation in conjunction with
robotic rehabilitation. It has been shown that EMG signals
can be used with machine learning algorithms to automati-
cally optimize multi-electrode array stimulation parameters
in animals with SCI [5]. Quantification of EMG signal
changes due to electrical stimulation and stand training could
similarly inform rehabilitative strategies for robotic devices
(e.g. Lokomat trainer or exoskeletons) which are coupled
with spinal stimulation. Recent experiments [6] show that
the combination of stimulation with robotic rehabilitation
devices leads to synergistic outcomes.

Fig. 1: Spinal cord stimulation with 16-electrode array implantation.
The array applies a specific pattern of electrical stimulation to the
spinal cord.

As a motivation of this work, we are developing a pertur-
bation platform to train (and test) SCI patient motor function
under spinal stimulation, shown in Figure 2. The platform is
able to tilt in any direction at high rotational speeds, as well
as translate up and down. This type of robotic trainer will
allow us to modulate the pattern of muscles that are activated
through the tilt angle, and also influence the sensorimotor
pathways that are activated by modifying the rotational speed
(e.g. high speed tilts will activate reflexive pathways).



(a)

(b)

Fig. 2: (a) Perturbation platform for patient training, which can
tilt in any direction (roll/pitch) and translate up/down; (b) Subject
standing on the platform at a given tilt angle.

However, the theory on how muscle activity changes under
spinal stimulation and with motor training is unknown, and
so optimal rehabilitation strategies are unknown. Studies
have examined the effects of robotic training and therapist
training on patients with SCI, noting their importance in
improving muscle activity [7]–[10]. Many current strategies
center around training patients to emulate healthy subject
activity [3], [11], [12]. However, the muscle activity in
spinally stimulated standing is markedly different from that
of healthy human subjects during quiet standing. Compared
to healthy standing, balance is more difficult to achieve and
standing is mainly controlled by spinal circuits activated via
the stimulating electrode array, rather than via the patient’s
voluntary motor control system [1], [2], [13]. This suggests
that SCI patients may be subject to different constraints in
neural activity, resulting in different solutions for muscle
activation when trying to achieve the same goal.

Therefore, we hypothesize that the effects of training
on EMG in SCI patients under spinal stimulation may be
markedly different from the changes seen in neurologically
intact subjects. This paper seeks to further our understanding
of the effects of motor training in spinally stimulated SCI pa-
tients (and their relation to healthy human subjects) with the
goal of designing robotic rehabilitation devices and strategies
for optimal motor recovery after SCI. For example, if certain
muscle co-activation patterns are identified to be important,
we could design our robotic platform to apply perturbations
that excite corresponding sensorimotor pathways.

To gain this understanding, we examine the features of SCI
patients’ EMG activity during standing (both before and after
a six month period of stand-training or no-stand-training),
and see how they change, as well as how they compare to
EMG features of several healthy subjects. The three main
findings of this work are that:

• EMG activity for good standing in SCI patients under
spinal stimulation does not emulate EMG activity in
healthy subjects,

• Stand training can induce significant changes in EMG
activity, greater than changes from stimulation alone,

• Changes in EMG activation induced by stand training
do not target features most important to standing per-
formance improvement, indicating the need for modified
training strategies with spinal stimulation.

These findings challenge the current wisdom on robotic
rehabilitation strategies that aim to emulate healthy human
muscle activity, and inform us on what features of the muscle
activity we should target through rehabilitative robots that are
not being effectively trained.

II. METHOD

A. Human Experiments

1) Standing Musculoskeletal Model: Fig. 3 shows a sim-
ple musculoskeletal model of the human leg muscles studied
in this work (generated in OpenSim [14]). It depicts the
locations of these muscles and the joints they actuate. The
knee joint is extended by the vastus lateralis (VL) and flexed
by medial hamstring (MH). The medial gastrocnemius (MG)
and the soleus (SOL) generate dorsiflexion and plantarflexion
(pull and push) torques at the ankle, respectively. For control
of standing, solutions are not unique as many combinations
of subgroup muscle activation can maintain stable posture.

Fig. 3: Musculo-skeletal model of human leg muscles studied.

2) SCI Patient Experiments: Data was collected from two
complete, paraplegic SCI patients, referred to as patients
ATC and ARI, implanted with a Medtronic 5-6-5 epidural
electrode array for spinal cord stimulation with a Medtronic
RestoreAdvanced Neurostimulator. The injury was in the
high thoracic spinal cord for both patients. Experiments
were performed over two non-consecutive weeks, six months
apart, allowing us to observe home stand training effects.

For each measurement trial, spinal stimulation began while
the patient was seated. Then the participant initiated the sit
to stand transition by positioning his feet shoulder width
apart and shifting his weight forward to begin loading the
legs. As shown in Fig. 4, the participant used the horizontal
bars of the standing apparatus during the transition phase to



balance and to partially pull himself into a standing position.
The patient then attempted to stand with minimal support
for ≈ 5 minutes under spinal stimulation. Note that spinal
cord stimulation induces the resulting muscle activity of the
patient by modulating the patient’s spinal circuits, which is
different from functional electrical stimulation in which the
stimulation directly stimulates the patient’s muscle activity.

Fig. 4: Image of SCI patient attempting to stand under spinal
stimulation. A stand frame wraps around the patient for safety and
support (if needed), and clinicians sit in front of and behind the
patient for support (if needed).

The choice of stimulating electrodes recruited on the array
and their polarities were modified between trials. This choice
was determined by a machine learning algorithm which con-
tinually proposed different “safe” stimuli (high probability of
eliciting non-painful response), and continually tested good
ones against each other to search for the optimal stimu-
lation patterns (resulting in independent, natural standing)
[15], [16]. Stimulation frequency and pulse width were kept
constant between trials at 25 Hz and 200 µs, respectively.
For a given stimulation pattern, frequency, and pulse width,
SCS amplitude was ramped upward until reaching a well-
performing value. The patient achieved full weight-bearing
standing with minimal assistance when empirically-optimal
stimulating configurations were used.

We utilized measurements from 8 muscles (left and right
muscles of 4 muscle groups) taken using surface EMG at a
sampling frequency of 2000 Hz. The 4 muscle groups were:
VL (Vastus Lateralis), MH (medial hamstring), MG (medial
gastrocnemius), and SOL (soleus). These are shown in Figure
3. The EMG was low-pass filtered at 200 Hz, and then high-
pass filtered at 1 Hz using a 5th order butterworth filter.

Table I describes how the clinicians quantified standing
quality. We utilized a discrete scoring system that ranges
from 1 to 10. From scores 1 to 5, the standing is not
independent but requires less and less assistance by bungees
or trainers as the score increases. From scores 6 to 10,
standing is overall independent and full-weight bearing. As
the score increases, standing is more natural, stable, and
durable. After every trial, a score on the overall standing
quality was assigned. The range of realized scores was
[3.25, 8.75] for patient ARI and [1.25, 10] for patient ATC.

Both patients received rigorous stand training in the clinic
prior to the first measurement session. Stand training in

TABLE I: The Scoring Criterions
Score Descriptions
1-2 Assisted by bungees or trainers (max)
3-4 Assisted by bungees or trainers (mod)
5 Assisted by bungees or trainers (min)
6-7 Hip: Not assisted, back arched

Knee: Not assisted, loss of extension during shifting
8-10 Hip: Not assisted, back straight

Knee: Not assisted, extended during shifting

this study involved the use of a rigid frame to practice
quiet standing under spinal stimulation. In the six months
between sessions, patient ATC continued stand training at
home utilizing a stand frame similar to the one shown in
Figure 4. Patient ARI was unable to do stand training in the
six months between his first and second session. Thus we can
compare patients ATC and ARI to analyze the differences of
having stand training over a six month period versus not
training over a six month period.

3) Healthy Patient Experiments: Data was collected from
six healthy participants (age: 27.2 ± 4.5 years; height: 168 ±
9 cm; weight: 62.3 ± 10.9 kg). They had no medical history
of neurological disorders. Each participant stood quietly with
bare feet, eyes open, and arms hanging along the sides of the
body for the duration of 60s. The participant was instructed
to stand quietly and refrain from voluntary movements.

Surface electromyograms (EMGs) were recorded from the
same muscles measured bilaterally in the participants with
SCI (VL, MH, MG, SOL). EMG signals were differentially
amplified with a band-pass filter with a bandwidth between
10 and 2,000 Hz (-3 dB), and digitized at a sampling
frequency of 4000 Hz. To compare results with the SCI
patients, we downsampled the signal to emulate a sampling
frequency of 2000 Hz. The EMG was then low-pass filtered
at 200 Hz and then high-pass filtered at 1 Hz using a 5th
order butterworth filter, as was done for the SCI patients.

Therefore, both patients followed the same experimental
protocol for quiet standing with the same muscles examined
and similar EMG filtering (though the healthy subject EMG
was preprocessed with 10-2000Hz bandwidth during data
collection). The main procedural difference was that the SCI
patients needed support from therapists and a stand frame
in many quiet standing trials, whereas the healthy subjects
needed no support.

B. EMG Feature Selection and Extraction

Traditional methods such as time-domain and frequency-
domain analyses have been widely utilized in EMG pattern
recognition [17], and they are capable of tracking muscular
changes. Other methods like Bayesian estimation [18] and
linear filtering also achieve good estimates of muscle forces.
Recently, [4] showed that a 4th order Auto-Regressive(AR)
model on each EMG channel could very accurately predict
SCI patient standing ability under spinal stimulation.

In this study, we want to utilize quantitative features of the
patients’ EMG activity that capture physiologically mean-
ingful characteristics of the EMG activity. By using phys-
iologically meaningful features, we can gain interpretable
insight into our patients’ changes in motor activity, rather



than focus exclusively on prediction of functional outcomes.
Work on muscle synergies in the neuroscience community
[19]–[22] supports the idea that motor activity in both healthy
subjects and SCI patients can be reasonably approximated
by an encoding of (1) the relative muscle activation pattern,
and (2) the EMG signal waveform. The theory is that EMG
signal waveforms are derived from neural commands sent by
the central nervous system, which activate neural networks
in the spinal cord that results in a relative muscle activation
pattern. Therefore, features that describe the relative muscle
activation pattern and the EMG signal waveform give us
reasonable insight into the rehabilitative processes that occur
at these two levels.

To describe the muscle activation pattern, we extract the
relative EMG activation power of different muscles as a
quantitative feature. For each trial, we take the EMG power
of each channel, and then normalize by the L2 norm of the
EMG power from all channels. This feature, which we define
as the activation pattern, W , describes the relative activation
power of the 8 different muscles (discounting their absolute
activation power), and is represented by a vector in R8.

To describe the EMG signal waveform, a 10th order
Auto-Regressive(AR) model was fit to each EMG channel,
leading to ten extracted coefficients for each EMG signal.
For 8 channels (one for each muscle), a total of 80 features
were extracted per observation. We then applied principal
component analysis to the AR model features to reduce the
feature set to the top 8 dimensions, which capture greater
than 99.8% of the variance (> 99.8% variance accounted
for). This allows for features of the same dimension (R8)
to be used to describe the EMG activation pattern and
EMG waveform. The AR model is invariant to the EMG
absolute amplitude, and the resulting features capture the
EMG waveform shape for each channel.

Therefore, we are able to separately describe the relative
muscle activation pattern and EMG waveform shape through
the W features and AR model features, respectively.

Note that we cannot utilize EMG power as an accu-
rate metric, as the absolute amplitude of the EMG varies
substantially between experimental groups due to different
EMG electrode type, application methods, and amplification.
Therefore, we utilize features that are invariant to the EMG
absolute amplitude.

III. RESULTS AND ANALYSIS

We want to answer the following main questions:
• What features of EMG activity are most important to

good standing performance in SCI patients under spinal
stimulation, and how does stand training influence these
features? This insight will allow us to evaluate the
efficacy of the current training strategy, and identify
important areas for robotic trainers to focus on.

• How does stand training in spinally stimulated SCI
patients influence the similarity of their EMG activity
to heathy subjects’ EMG activity, and does similarity
to healthy activity correlate with improved standing
ability? This insight could inform whether we should

design training strategies around emulating the behav-
ior of healthy subjects, or consider training different
behaviors that focus on the same functional outcome
(e.g. good standing).

Subsection (A) sets the stage by noting the high degree of
separability between different patients and different sessions,
and visualizing this separability. Subsections (B) and (C.1)
answer the first question by studying how EMG features
change with stand training and spinal stimulation versus
spinal stimulation alone, and analyzing correlations of those
EMG features with the patients’ standing scores. Subsections
(C.2) and (C.3) answer the second question by examining
the similarity of healthy subjects’ EMG activity to the SCI
patients’ EMG activity, and finding correlation between that
similarity and the patients’ standing ability.

A. Comparison of Healthy vs. SCI EMG Activation

To compare healthy EMG activity with SCI EMG activity,
we compared their AR model features and W features to
quantify the differences between the EMG waveform and
activation pattern, respectively. Figure 5 visualizes these
differences by projecting the AR model features and W
features onto their top 3 principal components and plotting
the result. Each point represents the EMG activity for a single
patient trial.

From Figure 5, we note that even with only 3 principal
components, there is reasonable separation in the EMG
waveform shape between each patient and the healthy sub-
jects, and between the two sessions of each patient. For the
EMG activation pattern W , there is also clear separation
between healthy subjects and the SCI patients, although there
is significant variability in the activation pattern of patient
ARI’s second session.

To quantify these findings, we train a linear support vector
machine (SVM) using the EMG waveform shape features
(AR model) and find that we get 97% classification accuracy
with all healthy subjects accurately classified. When using
the activation pattern features, W , the linear SVM achieves
95% classification accuracy with one of the healthy subjects
misclassified as an SCI patient. Note we are currently only
checking for linear separability of the data, rather than
predictability.

B. Influence of EMG activation pattern and waveform on
standing ability

First, we look at the muscle activation pattern features, W ,
to see if they are highly correlated with patient score. If they
are, this would be an indicator that good muscle activation
patterns are important to good standing.

We train multi-class SVMs with either a linear or RBF
kernel, and optimize their hyperparameters in order to predict
the patient’s standing scores. We use W as the features,
and utilize 3-fold cross-validation to test our results. The
results for our 5-class SVM are summarized in the confusion
matrix in Figure 6a, and show that the W features perform
very poorly at predicting patient standing ability. With the
5 classes shown, we get an overall classification accuracy
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Fig. 5: (a) Visualization of differences in EMG waveform shape
between the different subjects and across different sessions. Visu-
alized by projecting AR model coefficients onto the top 3 principal
components; (b) Visualization of differences in muscle activation
pattern between the different subjects and across different sessions.
Visualized by projecting W onto the top 3 principal components.

of 35%, and two classes are completely miscategorized. In
contrast, Figure 6b taken from [4] shows that AR model
features exhibit very high correlation with standing score.

Comparing Figures 6a and 6b, we note that using AR
model features (waveform shape), the standing score can
be predicted to the nearest integer (on a scale from 1-
10) with an overall prediction accuracy of 93%; Using W
features (activation pattern), the standing score is poorly
predicted with an overall prediction accuracy of 20% when
trying to predict to the nearest integer. Although the poor
prediction accuracy using W is likely exacerbated by the
non-uniform distribution of scores in the dataset, the fact
that the AR model achieved very high accuracy with patient
ATC indicates that the muscle activation pattern W is much
less influential in patient standing ability.

These preliminary results suggest that good rehabilitation
strategies should aim to influence patients’ EMG waveform
shape rather than the activation pattern (this challenge is
considered in the Discussion section).

(a)

(b)

Fig. 6: (a) Accuracy in standing score prediction using 5-class
SVM with W features (muscle activation pattern); (b) Accuracy
in standing score prediction for patient ATC using 10-class SVM
with AR model features (EMG waveform shape). Results taken
from [4].

C. Effects of Stand Training on EMG Activity

1) Effects of Stand Training versus Spinal Stimulation:
After comparing the importance of different features to
standing, we would like to see how stand training influences
the EMG features. We can calculate the change in the
EMG waveform and activation pattern between sessions in
order to approximate the effect of time/training. Using the
visualization in Figure 5, we can consider each trial as a point
in the EMG feature space, and each session is represented
by a cluster of points (red, blue, green, or purple).

To calculate the change in EMG features between sessions
(CW

train and CAR
train in Equation 1), we take the L2 distance

from each point (i.e. trial) in one cluster (corresponding to
one session) in the EMG feature space to the centroid of the
other cluster (corresponding to the other session) in the same
space. This metric is defined in Equation 1, which gives us a
distribution on the change in EMG activity after six months.

We also approximate the magnitude of the effect of spinal
stimulation (CW

stim and CAR
stim in Equation 2) by calculating

the variance of the distance from each trial (i.e. point) within
a session from the mean features (i.e. cluster centroid). This
metric, defined in Equation 2, gives us a distribution on
the variation in EMG activity between trials of the same
session where different spinal stimulation patterns were used.
Thus we have a measure for the magnitude effect of spinal



stimulation (based on the intra-cluster variation) as well as a
measure for the magnitude effect of time/training (based on
inter-cluster distances).

CW
train(i) = ||WS2(i)−WS1||2

CAR
train(i) = ||ARproj

S2 (i)−ARproj

S1 ||2 , i = 1, ..., N
(1)

CW
stim(j) = ||WS1(j)−WS1||2

CAR
stim(j) = ||ARproj

S1 (j)−ARproj

S1 ||2 , j = 1, ...,M
(2)

Here WSk represents the activation pattern features for
session k , ARproj

Sk denotes the AR model features projected
onto the top 8 principal components for session k, the indices
i, j index the ith trial of session 2 or the jth trial of session
1, and W̄ , ĀRproj denote the mean activation pattern and
mean AR model feature, respectively.

We use these measures to determine how, or whether,
training/time (i.e. the 6-month inter-session period) have an
effect on the patient’s EMG activity. Recall that patient ATC
received stand training during the inter-session period, while
patient ARI did not. If the intercluster distances are sta-
tistically significantly greater than the intracluster variation
(effect of spinal stimulation), then we can conclude that the
patient’s training is affecting the EMG activity in a way
which is not due to spinal stimulation alone. However, if the
intercluster distance is approximately equal to or less than
the intracluster variation, then what seems to be the effect
of patient training/time may be due to variations from spinal
stimulation.

Figure 7 shows the approximation of the effect of spinal
stimulation vs. the effect of training/time on the patients’
EMG activation pattern and waveform shape. We note that
the EMG activation pattern for patient ATC is significantly
affected by training – change from training is much greater
than the variation from spinal stimulation – and a significant
effect also is seen on the activation pattern for patient ARI.
However, there is no discernible effect of training/time on
the EMG waveform shape for either patient.

To confirm this qualitative observation, we utilize the
two-sample t-test to determine if the effect of training
is statistically significantly greater than the variation from
spinal stimulation. We want to reject the null hypothesis that
the distribution of EMG activity after training is consistent
with the original distribution prior to training.

We find that the activation pattern, W , changes at a 1%
significance level for both patients ATC and ARI (p-value
= 1.07e − 22 for ATC, p-value = 5.9e − 7 for ARI). We
hypothesize that both training and the absence of training
influence activation pattern – patient ATC followed a home
stand training schedule which was different from the stand
training done in the clinic, and patient ARI was unable to do
stand training during that time. Thus patient activity (manner
of training or the absence of training) influences the muscle
activation pattern that SCI patients utilize under SCS.

There was no statistically significant change in the EMG
waveform shape between the two sessions for either patient,

(a)

(b)

Fig. 7: (a) Change in activation pattern from intra-session variation
due to spinal stimulation, compared with inter-session change (pre-
and post-six month period); (b) Change in EMG waveform shape
from intra-session variation due to spinal stimulation, compared
with inter-session change (pre- and post-six month period).

even at the 20% significance level (p-value = 0.46 for ATC,
p-value = 0.22 for ARI). Thus while stand training can
have an effect on SCI patients’ muscle activation pattern,
we cannot conclude that stand training has any influence on
the EMG waveform shape (which we saw in Section III-B
is the feature that is highly correlated with patient standing
ability). Note that this does not mean that training does not
affect the EMG waveform shape, but only that the effect is
not large enough for our analysis to separate it out from the
effect of spinal stimulation.

2) Effect of Training on Similarity to Healthy EMG:
Given the statistically significant shift in activation pattern,
we want to examine whether time and training push the
patient closer to the EMG behavior of healthy subjects. We
define a metric for the distance from healthy standing as
the minimum L2 norm from each trial in feature space to
the closest healthy subject trial in the same space. This is
represented in Equation 3.

DW
Sk(i) = minj∈H ||WSk(i)−Whealthy(j)||2

DAR
Sk (i) = minj∈H ||ARproj

Sk (i)−ARproj
healthy(j)||2

i = 1, ..., Nk

(3)

The notation is the same as in Equations 1 and 2 with the
addition that H represents the set of healthy subjects, and



Nk is the number of trials in session Sk.

Fig. 8: Distance from healthy muscle activation pattern for each
patient both before and after six month period. Results divided
between trials of non-independent standing (score < 6) and in-
dependent standing (score ≥ 6).

We only examine the training effect on the EMG activation
pattern for patients ATC and ARI, since we saw from Section
III-C.1 that the training effect on EMG waveform shape was
not significantly greater than the effect of spinal stimulation.

Figure 8 shows the distance from healthy subjects’ EMG
activation pattern both before and after the six month home
period. First, we confirm that there is a statistically significant
difference in the EMG activation pattern for SCI patients vs
healthy subjects (i.e. the intercluster distance between the
features of healthy subjects and SCI patients is greater than
the intracluster variation between the healthy subjects). This
difference is statistically significant at the 0.1% significance
level for both patients/sessions.

Then we note that patient ATC’s distance from healthy
subjects’ EMG activation pattern actually increases after
stand training. In contrast, such a conclusion about patient
ARI’s distance from healthy subjects’ EMG activation pat-
tern cannot be made due to the higher variances. In order
to quantify the statistical significance of these differences,
we utilize the two-sample t-test in order to reject our null
hypothesis that the EMG activity before and after the six
months are a similar distance from healthy subjects’ EMG
activity. We find that for patient ATC, there is a statistically
significant increase in the difference from healthy EMG
activation pattern for both cases of independent standing and
non-independent standing (with p-values of 1.1e − 10 and
1.1e− 5, respectively) at the 1% significance level.

However, we found that for patient ARI, the difference
from healthy EMG activation pattern for the cases of inde-
pendent and non-independent standing were not statistically
significant at the 1% significance level (with p-values of 0.63
and 0.55, respectively). Since patient ARI did not do stand
training at home whereas patient ATC did, we hypothesize
that the consistent stand training under spinal stimulation
actually pushed the activation pattern further from the muscle
activation patterns of healthy patients. For patient ATC, this

could be a consequence of the stand training at home being
significantly different from the standing training done at the
clinic (which closely emulated healthy standing). This is
supported by the fact that patient ATC’s muscle activation
patterns drifted further from the healthy ones.

3) Correlation of Score with Similarity to Healthy Stand-
ing: We also must ask whether the patient’s similarity
to healthy standing influences their standing performance.
We utilize the metric defined in Equation 3 to measure
similarity to healthy standing. Figure 9 shows the patient’s
standing score versus the distance of the EMG waveform
shape from healthy subjects’ EMG waveform shape (via
the AR model features projected on the top 8 principal
components). We immediately note that there is no linear
correlation linking the two, with linear regression to the data
having r2 = 0.0044. To confirm the lack of meaningful
correlation, we trained SVMs with either a linear kernel
or RBF kernel with optimized hyperparameters, and tested
their 3-fold cross-validated performance in classifying non-
independent (score < 6) vs. independent standing (score ≥
6). The highest accuracy we achieve is 50% classification
accuracy (comparable to random guessing) and this drops as
we introduce more classes for prediction of standing scores.

Fig. 9: A scatter plot of patient score versus the distance from
healthy EMG waveform (as defined in Equation 3). Each point
represents a single patient trial.

The same result was found when considering the distance
of the SCI patients’ EMG activation pattern, W , from healthy
subjects’ EMG activation pattern. Linear regression to the
data gives r2 = 0.049 and our best-tuned SVMs give 3-fold
cross-validated classification accuracy of 55% for classifying
independent vs. non-independent standing.

Based on these results, we conclude that the SCI patients’
standing performance is not explicitly linked to the similarity
of their EMG activity to healthy subject EMG activity. In
other words, SCI patients optimize standing performance
through a strategy that is distinct from healthy subject
behavior and do not emulate healthy patient activity.

IV. DISCUSSION

We have seen that current training strategies for SCI
patients under spinal stimulation influence EMG muscle



activation pattern, but not necessarily the EMG waveform
shape – even though the latter has been show to be more
critical to good standing under spinal stimulation. This
indicates a significant gap between current training strategies
and optimal ones, as we are currently not targeting aspects
of the EMG activity that are best correlated with functional
performance. Therefore, robotic rehabilitation devices should
adopt different strategies to train spinally stimulated SCI
patients with the aim of modifying their EMG waveform
shape. The goal is to have robotic training and spinal
stimulation working synergistically to optimize the patient’s
muscle activity.

Furthermore, we have found that good standing for SCI
patients does not emulate healthy subject standing, in either
muscle activation pattern or waveform shape. This pre-
liminary result suggests that robotic rehabilitation devices
should aim to optimize performance-based metrics, rather
than attempt to replicate healthy subject motion. In future
work, we would like to repeat these analyses with a larger
pool of patients, in order to make stronger generalizations
about our results to the entire SCI population. However, these
preliminary results suggest that current training strategies are
suboptimal and warrant a revisiting of robotic rehabilitation
devices that seek to emulate healthy subject motion.

With respect to the perturbation platform described in
the Introduction, as well as other robotic training devices
such as exoskeletons, we should utilize these robotic de-
vices to encourage modification to EMG waveform shape
and de-emphasize the importance of the muscle activation
patterns that are elicited. However, while the EMG waveform
shape is critical, it is very difficult to directly modulate
compared to the EMG activation pattern. As seen in this
study, patient training did not significantly influence EMG
waveform shape. Recent results though have been able to
identify muscle synergies (described in Section II-B) in
SCI patients and suggest that patient EMG waveform shape
can be directly modulated through activation of different
muscle synergies [22]. Drawing on this understanding of
the central nervous system, we may be able to design more
intelligent robotic platforms that work with spinal stimulation
to effectively and repeatably target sensorimotor pathways
corresponding to important muscle synergies.
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