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Reinforcement Learning

Reinforcement learning (RL) studies how to use data from interactions with the 
environment to learn an optimal policy:

𝜋𝜃 𝑎 𝑠 : 𝑆 × 𝐴 → 0,1

𝜏: 𝑠𝑡 , 𝑎𝑡, … , 𝑠𝑡+𝑁, 𝑎𝑡+𝑁

Figure from Sergey Levine

Policy gradient-based optimization with no 
prior information:

Policy: 

Reward 
Optimization:

Williams, 1992; Sutton et al. 1999 
Baxter and Bartlett, 2000 
Greensmith et al. 2004



RL methods suffer from high variance in learning 
(Islam et al. 2017; Henderson et al. 2018)

Variance in Reinforcement Learning

Allows us to optimize policy with no prior information 
(only sampled trajectories from interactions)

Greensmith et al. 2004, Zhao et al. 2012 
Zhao et al. 2015; Thodoroff et al. 2018
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However, is this necessary or even desirable?

𝒂 = 𝒖𝒑𝒓𝒊𝒐𝒓(𝒔)

Cartpole

𝑠𝑡+1 ≈ 𝑓 𝑠𝑡 + 𝑔 𝑠𝑡 𝑎𝑡

𝐿𝑄𝑅 Controller 

Nominal controller is stable 
but based on:
• Error prone model
• Linearized dynamics



Regularization with a Control Prior

Combine control prior, 𝑢𝑝𝑟𝑖𝑜𝑟(𝑠), 

with learned controller, 𝑢𝜃𝑘 𝑠 ,

sampled from 𝜋𝜃𝑘 𝑎 𝑠

𝜋𝜃𝑘 learned in same manner with samples drawn from new distribution (e.g. ) 

𝜆 is a regularization 
parameter weighting 
the prior vs. the 
learned controller

Under the assumption of Gaussian exploration noise
(i.e. 𝜋𝜃 𝑎 𝑠 has Gaussian distribution):

Johannink et al. 2018; Silver et al. 2019

which can be equivalently expressed as the constrained 
optimization problem, 



Interpretation of the Prior

Theorem 1. Using the mixed policy above, variance from 

each policy gradient step is reduced by factor  
1

1+𝜆 2 .

However, this may introduce bias into the policy   

where                   represents the total variation distance 
between two policies.
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Theorem 1. Using the mixed policy above, variance from 

each policy gradient step is reduced by factor  
1
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However, this may introduce bias into the policy   

Strong regularization:   The control prior heavily constrains 
exploration. Stabilize to the red 
trajectory, but miss green one.

Weak regularization:   Greater room for exploration, but 
may not stabilize around red 
trajectory.

where                   represents the total variation distance 
between two policies.



Theorem 2.  Assume a stabilizing ℋ∞ control prior within the set 𝒞 for the dynamical system 
(14). Then asymptotic stability and forward invariance of the set 𝒮𝑠𝑡 ⊆ 𝒞

is guaranteed under the regularized policy for all 𝑠 ∈ 𝒞. 

Cartpole

With a robust control prior, the regularized controller always 
remains near the equilibrium point, even during learning

Stability Properties from the Prior

Regularization allows us to “capture” stability properties from a robust control prior 



Data gathered from chain of 
cars following each other. 
Goal is to optimize fuel-
efficiency of the middle car. 

Results

Goal is to minimize 
laptime of simulated 
racecar

Control Regularization helps by providing:

• Reduced variance
• Higher rewards
• Faster learning
• Potential safety guarantees

However, high regularization also leads to potential bias

See Poster for similar results on CartPole domain

Code at: https://github.com/rcheng805/CORE-RL
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