
Assume with have a crude control prior, 𝑢𝑝𝑟𝑖𝑜𝑟 𝑠 ,  synthesized from some system model: 

Let us incorporate this control prior by blending it with the learned controller, 𝑢𝜃𝑘 𝑠 :

where 𝜆 is a regularization parameter that weights the control prior against the RL control.

Overview and Motivation

• Reinforcement learning focuses on finding an agent’s policy that maximizes long-term 
reward through trial and error

o This trial-and-error approach has been successful for learning complex control 
tasks, but it is sample inefficient, unsafe, and has high variance.

• To be useful, reinforcement learning must reliably find good solutions with reasonable 
sample efficiency

• This work introduces a regularization method that uses a control prior to significantly 
reduce variance in learning, improve sample efficiency, and improve safety

Control Regularization

Background and Problem Formulation
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Find Policy to Maximize Reward

• Learn through sampled trajectories (no model required)

• Model-free RL methods suffer from high variance in learning and 
sample inefficiency (Islam et al. 2017; Henderson et al. 2018; Recht 2019)

Adapted from Sergey Levine

Bias-Variance Tradeoff and State-Space Interpretation

Control Prior Synthesis and Stability Properties

Control regularization greatly reduces variance in learning, and can significantly improve 
performance and learning efficiency of RL
• It allows us to capture safety/stability properties from a robust control prior

Important issues that remain to be tackled are:
• Incorporating a changing control prior into the RL framework,
• Analyzing how poor of a control prior can be used while still benefiting learning,
• Improving the adaptive regularization strategy.

Conclusion

Empirical Results

Code at: https://github.com/rcheng805/CORE-RL 
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What if we have a 
system model?

How to intelligently 
utilize prior 
knowledge?

Adaptive Regularization Weighting

Cartpole

We validated our ideas on three problems, using two baseline RL algorithms –
Deep Deterministic Policy Gradients (DDPG) and Proximal Policy Optimization (PPO).

DDPG results are shown below (see paper for PPO results): 

Theorem 2.  Assume a stabilizing ℋ∞ control prior within the set 𝒞 for the 
dynamical system (14). Then asymptotic stability and forward invariance of the set 
𝒮𝑠𝑡 ⊆ 𝒞

is guaranteed under the regularized policy (5) for all 𝑠 ∈ 𝒞. 

The point is not to say that ℋ∞ control provides the best control prior, but 
rather to show that regularization allows us to “capture” stability properties 

from a robust control prior.

From a stability point of view, the control prior should maximize robustness to 
disturbances and model uncertainty. We treat the RL control, 𝑢𝜃𝑘, as a performance 

maximizing “disturbance” to the control prior, 𝑢𝑝𝑟𝑖𝑜𝑟. 

• The regularized policy takes advantage of stability properties of the robust 
control prior, and the performance optimization properties of the RL controller.

Fit a model to 
estimate return

Generate samples 
(i.e. run the policy)

Improve the 
policy

(6)

Lemma 1.  The policy 𝑢𝑘 𝑠 in Equation (6) is the solution to the following 
regularized optimization problem:

which can be equivalently expressed as the constrained optimization problem, 

where      constrains the policy search. 

Control regularization may bias the 
learned policy, if regularization is high 
and the control prior is poor

Control regularization reduces the 
variance arising from the policy gradient 

by a factor 
1

(1+𝜆)2

High variance in policy gradients translates into 
high variance in policy learning

State-Space Interpretation:  

Suppose we have system dynamics described by:

which is linearized with bounded disturbance, 

The set 𝒮st contracts as we:
• Increase robustness of the control prior (increase σm ζk )
• Decrease our dynamic uncertainty/nonlinearity CD
• Increase weighting λ on the control prior

CartPole

PROS: With intermediate regularization, we observe

 Significant improvement in reward (better than 
both the control prior and baseline algorithm)

 Faster learning (in car-following setting with fixed 
dataset size, regularization required to learn)

 Substantially reduced variance in learning
 Safety of the learned controller

CONS: High regularization leads to

 Significant bias of the reward 
towards the control prior

 Potentially lower reward in some 
runs (though unregularized 
learning is much more unreliable).

The regularization weight, 𝜆, should be strong when the learned controller is highly 
uncertain, and should decrease as we become more confident in the learned controller
• A proxy for confidence in the learned control is error in the value function (i.e. TD-error). 

This TD-error approximates how poorly the RL algorithm predicts the value of a given state. 
If it is high, we rely heavily on the control prior. We map this error to regularization weight:

Car-Following

TORCS Racecar 
Simulator

Lower 𝜆 result when the value function predictions are accurate
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where                 represents the total 
variation distance between two policies, 
and 

𝐷𝑇𝑉 ∙,∙

𝐷𝑠𝑢𝑏 = 𝐷𝑇𝑉 𝜋𝑜𝑝𝑡 , 𝜋𝑝𝑟𝑖𝑜𝑟

• The explorable region of state space 
is denoted by the set       , which 
grows as 𝜆 decreases. Thus, higher 
regularization more heavily 
constrains exploration

• The difference between the control 
prior trajectory optimal trajectory     
(i.e.           ) may bias the final policy 
depending on the explorable region.

𝐷𝑠𝑢𝑏

𝒮𝑠𝑡: 𝑠 ∈ ℝ𝑛: 𝑠 2 ≤
1

𝜎𝑚 𝜁𝑘
2 𝑃 2𝐶𝐷 +

2

1 + 𝜆
𝑃𝐵2 2𝐶𝜋 , 𝑠 ∈ 𝒞

𝒮𝑠𝑡: +
2

1 + 𝜆
𝑃𝐵2 2𝐶𝜋 , 𝑠 ∈ 𝒞

𝛿𝜋 𝑠𝑡 = 𝑟𝑡+1 + 𝛾𝑄𝜋 𝑠𝑡+1, 𝑎𝑡+1 − 𝑄𝜋 𝑠𝑡 , 𝑎𝑡 ,

𝜆 𝑠𝑡 = 𝜆max 1 − 𝑒−𝐶 𝛿 𝑠𝑡−1

ሶ𝑠 = 𝑓𝑐 𝑠, 𝑎 ,

𝑑 𝑠, 𝑎 : ሶ𝑠 = 𝐴𝑠 + 𝐵2𝑎 + 𝑑 𝑠, 𝑎


