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Abstract— Muscle synergies encode motor activity as a linear
superposition of multiple motor units composed of a temporal
command exciting a specific network of muscles. This study
examines muscle synergies derived from simple standing studies
of a complete spinal cord injury (SCI) patient under epidural
spinal stimulation. A popular technique for extracting these
synergies from EMG data is non-negative matrix factorization
(NNMF). However, standard NNMF algorithms do not allow
for physiological delays for a neural signal to reach different
muscles. These delays are prevalent in SCI patients under spinal
stimulation, and so we propose a new algorithm (regularized
ShiftNMF) to extract muscle synergies which account for signal
delays. We find muscle synergies extracted by the regularized
ShiftNMF algorithm are significantly better at reconstructing
EMG activity, and the resulting features are physiologically
consistent and more useful in describing patient behavior.

I. INTRODUCTION

Motor activity requires a complex mapping from the
brain to the spinal cord and then to individual muscles.
In 1994, Mussa-Ivaldi et al. observed that in frogs, total
muscle activity was encoded as a linear superposition of a
few motor primitives, suggesting a low-dimensional, linear
representation of motor output [11]. Muscle synergies capture
this low-dimensional, linear motor behavior, and are defined
as the coordinated recruitment of a group of muscles with a
specific activation waveform. Similar results in other animals
have provided substantial evidence of muscle synergies in
the central nervous system (CNS) [2], [17], [9]. Statistical
analysis from previous experiments with animals and humans
have shown that many motor behaviors can be described by
the combination of a few muscle synergies [4], [16], [1], [13],
[5]. Figure 1 shows the concept of muscle synergies and how
muscle synergies linearly combine to produce overall EMG
activity. The idea is that each muscle synergy represents a
network of interneurons activated by a neural command;
each interneuronal network excites a specific pattern of
motoneurons, resulting in fixed patterns of muscle activity
following a similar temporal waveform. A current theory is
that the spinal cord controls functional motor activity, in large
part, by modulating activity of these muscle synergies – as
opposed to directly controlling individual muscles.

This study explores the use of muscle synergies in patients
with complete spinal cord injury (SCI). Until recently, it
was believed that motor function could not be recovered
after complete SCI, but studies have shown that complete
SCI patients can recover motor function under spinal cord
stimulation (SCS) [6], [12]. However, the muscle activity
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Fig. 1. Illustration of two muscle synergies composed to reconstruct
some EMG activity. W represents the activation pattern of muscles, and
H represents the activating neural signal. Figure adapted from [3].

resulting from SCS is significantly different from healthy
muscle activity. By examining muscle synergies elicitied
from SCI patients under SCS, we will be able to better
quantify these differences, understand the effects of SCS on
motor activity, and design better rehabilitation strategies.

Non-negative matrix factorization (NNMF) is a common
method for extracting muscle synergies from EMG data [8].
Using this method, studies indicate that muscle activity from
animals and humans can indeed be accurately decomposed
into the linear superposition of a few muscle synergies, which
are associated with specific movement kinematics [16], [2],
[1]. However, a significant issue with this method is that it is
not shift-invariant with respect to the different EMG channels
– it assumes that each muscle is activated simultaneously by
the central nervous system without differential delays.

It is known that neural signals take differing times to reach
different muscles, based on the distance these signals must
travel and the finite speed of neural signals along axons.
For example, a neural signal originating from the spinal
cord will reach proximal muscles before distal muscles.
In healthy subjects, it is assumed that the CNS accounts
for these signal delays when processing and sending the
appropriate motor signals (e.g. it may properly synchronize
the activation of interneurons in a muscle synergy). However,
in patients with SCI under spinal stimulation, an activating
signal is externally induced at a specific area of the spinal
cord at a fixed frequency. This induced neural response must
propagate down the limbs, resulting in significantly different
delays in the EMG response at distal muscles. Therefore,
extracted muscle synergies must account for these delays,
which NNMF cannot do. In this work, we utilize a variant of
NNMF which accounts for these delays, named regularized
ShiftNMF, and observe how these extracted muscle synergies
better capture the motor behavior of a complete SCI patient
under SCS.



The main two contributions of this work are:
• The first examination of muscle synergies in SCI

patients under spinal stimulation,
• The first use of regularized ShiftNMF algorithm

to enable extraction of muscle synergies which
account for signal delays in the CNS.

II. METHOD

A. SCI Subjects and Task

Data was collected from a complete, paraplegic SCI pa-
tient implanted with a Medtronic 5-6-5 epidural electrode ar-
ray for SCS with a Medtronic RestoreAdvanced Neurostimu-
lator. Experiments were performed over two non-consecutive
weeks, and a total of 104 trials of stimulation/EMG data
were gathered from the patient. For each trial, the patient
attempted to stand with minimal support for ≈ 5 minutes.
The experimental procedures involving the human subject
were approved by the UCLA Institutional Review Board.

The choice of stimulating electrodes recruited on the array
and their polarities were modified between trials. This choice
was determined by a machine learning algorithm which
proposed different “safe” stimuli (high probability of non-
painful response), and tested good ones against each other
to search for the best stimulation patterns [14], [15].

Stimulation frequency and pulse width were kept constant
across trials at 25 Hz and 200 µs, respectively. For each trial
(fixed stimulation pattern), the SCS amplitude was ramped up
until reaching a well-performing value. The patient achieved
full weight-bearing standing with minimal assistance when
empirically-optimal stimulating configurations were used.

We utilized measurements from 8 muscles (left and right
muscles of 4 muscle groups) taken using surface EMG at
a sampling frequency of 2000 Hz. The 4 muscle groups
were: MH (medial hamstring), MG (medial gastrocnemius),
TA (tibialis anterior), and SOL (soleus). The EMG was low-
pass filtered at 55 Hz, rectified, and then high-pass filtered
at 1 Hz using a 3rd order butterworth filter.

For each trial, clinicians scored the patient’s quality of
standing on a 1-10 integer scale. For scores in the range 1-5,
the standing is not independent but as the score increases, the
patient requires less assistance. From 6 to 10, the standing is
independent and full-weight bearing; as the score increases,
the standing is more natural, stable, and of greater duration.

B. Muscle Synergy Extraction Algorithm

Muscle synergies can be extracted from EMG data using
existing efficient algorithms for NNMF [8] by solving the
following optimization problem:

minimize
W,H

||EMG−
∑
k

Wn,kHk,t||22

This is solved using alternating least squares with multi-
plicative updates to find a local optimum. Here EMG refers
to the measured EMG response, W represents the activation
pattern of each muscle synergies (each column represents
the relative muscle activation pattern for synergy k), and H
represents the activating signal for each muscle synergy (each

row represents the activation waveform for synergy k). This
is illustrated in Figure 1.

As mentioned previously, this formulation does not ac-
count for delays between different muscles. The implicit
assumption when using NNMF for muscle synergy extraction
is that the neural signal generated by the spinal cord must
reach every muscle simultaneously. To account for delays in
SCS, we can reformulate the problem as follows:

minimize
W,H,τ

||EMG−
∑
k

Wn,kHk,t−τn,k
||22

By adding a delay parameter, τ , to the original opti-
mization problem, we can now allow each neural signal
(represented by a row, k, of H) to be shifted by a small
delay τn,k before being sent to each individual muscle,
n. The optimization problem is solved by first doing a
Fourier transform on the parameters W,H, τ to conveniently
represent the delay as a complex exponential, and then
using alternating least squares with multiplicative updates
to iteratively converge on parameter estimates. Details can
be found in [10].

We also must ensure that the calculated delays are con-
sistent with neurophysiology. Consider that a generic 10Hz
periodic signal would be equally likely to have a 10ms delay
and a 110ms delay. Hence, the optimization problem above
may lead to non-physiological estimates of delay τ , since
many delays τ can lead to similarly good factorizations.
However, based on the physiology of the CNS, we can
estimate the order of magnitude of expected delays. For
example, neural signals travel down motor nerves at speeds
on the order of 100ms , and the length of a lower limb is
≈ 0.5 − 1m, so a signal sent from the spinal cord should
take order of magnitude 10ms longer to reach a thigh muscle
than a shank muscle with variations from patient to patient.

Given these order of magnitude estimates of expected de-
lays, we can modify the algorithm to incorporate a prior, T0,
on the delays to ensure that they remain physiological consis-
tent. If we assume the synergy reconstruction error is gaus-
sian (i.e. P(EMG|W,H, τ) = N (

∑
kWn,kHk,t−τn,d

,Γ)),
then adding a gaussian prior, T0, on the delay, τ in a bayesian
formulation is equivalent to adding L2 regularization to the
underlying optimization problem, as shown below:

minimize
W,H,τ

||EMG−
∑
k

Wn,kHk,t−τn,d
||22 + λ||τ − T0||22

This new optimization problem can be solved by alter-
nating least squares as before, and only the update law for
the delay τ must be modified by linearly adding in the
gradient/Hessian corresponding to the regularization term.

C. Determination of Number of Synergies

Note that in the above muscle synergy extraction formu-
lations, the number of muscle synergies k must be prede-
fined. Most work on muscle synergies utilize the variance
accounted for (VAF) metric defined below to estimate the
proper number of muscle synergies:



V AF = 1−
||EMG−

∑
kW:,kHk,t−τn,k

||2
||EMG||2

This is a measure of how well the muscle synergies recon-
truct the underlying EMG activity. In the NNMF formulation,
we will have τ = 0 (no delays).

Typically the number of synergies is defined as the min-
imum k such that VAF rises above some threshold, or the
slope of VAF decreases significantly. However, this makes
the number of synergies highly dependent on the threshold
values used and the pre-process filtering of the EMG. Other
work has attempted to improve on these methods by cross-
validating over several trials [7], or utilizing different likeli-
hood measures and information criterion [18]. We utilize the
curvature of the VAF vs. synergy number curve as applied
in [18] to define the number of synergies.

Note that since the regularized ShiftNMF algorithm uses 8
more free parameters per synergy (for 8 muscles) compared
with NNMF, it is expected to better fit to the data. To address
this, we run the algorithm on training data to obtain proper
delays τ for the synergies, and then cross-validate by running
the algorithm with the same fixed delay parameters, τ , on test
data. Then we can directly compare the ShiftNMF fit results
with NNMF, since they utilize the same free parameters –
see Figure 2(a).

For further cross-validation of results, we run the regular-
ized ShiftNMF algorithm on training data, then fix both the
activation pattern W and delays τ , and run the algorithm on
test data. This helps avoid overfitting to the data – see Figure
2(b). Because the underlying EMG data is not stationary due
to natural fluctuations in the muscle activity and patient’s
stance, we do not fix the activating signal, H .

III. RESULTS AND ANALYSIS

A. EMG Reconstruction and Number of Synergies

We were able to obtain a significantly better EMG re-
construction (higher VAF) using the regularized ShiftNMF
algorithm versus the NNMF algorithm across all trials, as
reflected in Figure 2. When cross-validating with respect
to both the activation pattern W and delay τ , the synergy
extracted by ShiftNMF is able to account for ≈ 70% of
the variance in the EMG signals, whereas NNMF achieves
less than 60% reconstruction accuracy even with more syner-
gies. Furthermore, the performance of regularized ShiftNMF
remains high with cross-validation, whereas NNMF perfor-
mance degrades considerably with cross-validation (fixing
activation pattern W ). Based on the curvature of the VAF
curve, we conclude that there is a single muscle synergy
obtained through regularized ShiftNMF.

B. Analysis of neural signal delays, T

As validation of our extracted muscle synergy, we note
that the algorithm’s calculated delays, τ , are consistent with
expected values based on the speed of neural signals, as
discussed in Section II(b). The delays when considering a
single synergy are shown in Figure 3.

Fig. 2. VAF plotted against the number of synergies extracted. The mean
VAF across the 104 trials was used for each data point. (a) ShiftNMF is
cross-validated by fixing the delay τ , whereas NNMF is not cross-validated.
(b) ShiftNMF is cross-validated by fixing the delay τ and activation pattern
W . NNMF is cross-validated by fixing activation pattern W .

Fig. 3. Muscle activation delay for each muscle in the muscle synergy
(normalized to left MH) from 56 trials in January and 48 trials in July.

Note that left/right muscles within each muscle group
have similar delays, and that delays increase as we go
from MH to TA/MG muscles to SOL, which reflects an
ordering based on distance from the spinal cord. We also
note that the observed delays are in line with the order of
magnitude delay expected (≈ 10ms) as discussed in Section
II(b). This consistency with physiological models is further
evidence that regularized ShiftNMF muscle synergies capture
physiological phenomenon that would be missed by NNMF.

C. Prediction of Standing Score from Synergy Features

To further validate the utility of regularized ShiftNMF for
muscle synergy extraction, we look for correlations between
muscle synergy features and standing ability of the SCI
patient. We also want to compare muscle synergies extracted
with regularized ShiftNMF versus NNMF, and see which
are better indicators of motor deficits. To find correlations
between muscle synergies and standing ability, we attempted
to “predict” the patient’s standing ability score (from 1-10)
based on EMG power and muscle synergy features, using
Linear Regression, SVMs, or Random Forests – all with 3-
fold cross-validation. For features of the muscle synergies,
we consider the activation pattern W , activation coefficient
H , and V AF for a given synergy number.

Figure 4(a) shows prediction accuracy based on linear
regression with EMG power and muscle synergy features. We
found that using these features for the 104 trials, 74% of the



estimates are within ±1 of the true score, and 97% are within
±2 of the true score. In comparison, if we do not include
the muscle synergy features, only 59% of the estimates are
within ±1 of the true score, and 91% are within ±2 of the
true score. Thus adding muscle synergy features leads to
significant improvements in prediction accuracy. Figure 4 (b)
compares score classification accuracy – independent stand-
ing (score ≥ 6) vs. non-independent standing – using synergy
features from either NNMF or regularized ShiftNMF.

One of the most interesting findings was that VAF ex-
tracted by ShiftNMF (a single scalar feature) had a significant
linear correlation with the patient’s standing ability, and was
the most important synergy feature in predicting standing
ability. Thus the patient’s standing ability depends on how
well the muscle activity follows a low-dimensional muscle
synergy structure. This suggests that good SCS for standing
should excite one (or more) well-defined muscle synergy
in the spinal cord, and that activation of synergy structures
could be important to human motor function under SCS.

We also note that features of muscle synergies extracted
with regularized ShiftNMF were better correlated with stand-
ing ability than synergy features extracted with NNMF. More
importantly, the linear correlation between VAF and standing
ability was much weaker with synergies extracted by NNMF.
The significant correlations between synergy features and
standing ability, in combination with the improved EMG
reconstruction and accurate modeling of physiological de-
lays, suggest that regularized ShiftNMF provides a better
description of muscle synergies for SCI patients.

Fig. 4. Top figure shows error in score prediction by linear regression
on muscle synergy features and EMG power. Bottom table shows error
of standing score prediction based on synergy features, on scoring scale
between 1-10. First column in table utilizes activation pattern W , muscle
delays T , activation coefficient H , and VAF as features (18 features),
whereas the second/third column uses only VAF as a predictor (1 feature).

IV. CONCLUSIONS
We have seen that regularized ShiftNMF allows us to

identify muscle synergies in SCI patients under SCS by

accounting for signal delays. The patient’s standing ability is
significantly correlated with the presence of muscle synergy
structure and the features of that muscle synergy. Our results
suggest that muscle synergies extracted by regularized Shift-
NMF can be a useful lens through which to examine motor
activity. We hope a better understanding of these synergies,
and how they map to the spinal cord, can guide design of
better stimulation by helping us to (1) identify good motor
activity and (2) optimally excite important synergies.
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