
Safe Reinforcement Learning through
Barrier Functions for Safety-Critical

Control Tasks

Richard Cheng, Gabor Orosz, Richard Murray, Joel W. Burdick

Motivation

Machine learning is promising to enable new technologies ranging from
autonomous cars to robot manipulation

2

Safety is critical
We must ensure that robots either remain away
from obstacles or within a workspace, even
when it is still learning

In this work, we introduce model information (through barrier functions) into
the reinforcement learning framework to guarantee safety during learning

Policy gradient-based optimization with no
prior information:

𝜋∗ = max
𝜋

𝐽(𝜋) = max
𝜋

𝔼𝜏~𝜋 𝛾𝑡 𝑟 𝑠𝑡 , 𝑎𝑡

Model-Free Reinforcement Learning

Reinforcement learning (RL) learns an optimal policy through interactions with
the environment:

Allows us to optimize policy with no model information
(only sampled trajectories from interactions)

3

Silver et al. (2014)
Lillicrap et al. (2015)
Schulman et al. (2015)

𝜏: 𝑠𝑡 , 𝑎𝑡, … , 𝑠𝑡+𝑁, 𝑎𝑡+𝑁

Safety during Policy Search

Throwing away any model information we have – learning from scratch…

• Slow Learning, high variance in policies

• No guarantees on system safety! Usually no replay in real world.

𝜋∗ = max
𝜋

𝔼𝜏~𝜋 𝛾𝑡 𝑅 𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1 s.t. π ∈ 𝑆𝐴𝐹𝐸

4

𝜋0

𝜋𝑜𝑝𝑡
Π𝜃

𝜋1
𝜋2

𝜋𝑘

Policy Space

𝜋𝑖: Policy after learning iteration 𝑖
𝜋𝑜𝑝𝑡: Optimal policy to be learned

Set of
Safe Policies

SAFE

Defining Safety of Policy

5

𝜋0

𝜋𝑜𝑝𝑡
Π𝜃

𝜋1
𝜋2

𝜋𝑘

Policy Space

𝜋𝑖: Policy after learning iteration 𝑖
𝜋𝑜𝑝𝑡: Optimal policy to be learned

Set of
Safe Policies

ℎ(𝑠) ≥ 0

𝜋∗ = max
𝜋

𝔼𝜏~𝜋 𝛾𝑡 𝑅 𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1 s.t. ℎ 𝑠𝑡 ≥ 0 ∀𝑡

We want to restrict policy search to
policies 𝜋 such that for all 𝑠𝑡 ∈ 𝐶, the
next state 𝑠𝑡+1 ∈ 𝐶 under policy 𝜋

Assume control-affine dynamics:

𝑠𝑡+1 = 𝑓 𝑠𝑡 + 𝑔 𝑠𝑡 𝑎𝑡 + 𝑑 𝑠𝑡

𝑑 is unknown, but either (1) bounded, or
(2) described by a mean/variance.

If we can find an 𝑎𝑡 that satisfies this safety condition for
all 𝑠 ∈ 𝐶, then we are guaranteed a safe controller.

Enforcing Safety through Barrier Functions

Gaussian Process model parameterizes 𝑑 𝑠
with mean 𝜇𝑑(𝑠) and variance 𝜎𝑑 𝑠
• Bounds model error with given probability

If we can find action 𝑎𝑡 that satisfies this condition,
then safety certified with probability 1 − 𝛿

Given the safe set 𝐶 defined previously, the continuously
differentiable function ℎ is a discrete-time control barrier
function (CBF) for the dynamical system if there exists
𝜂 ∈ 0,1 such that for all 𝑠𝑡 ∈ 𝐶,

sup
𝑎𝑡∈𝐴

ℎ 𝑓 𝑠𝑡 + 𝑔 𝑠𝑡 𝑎𝑡 + 𝜇𝑑 𝑠𝑡 ± 𝑘𝛿𝜎𝑑 𝑠𝑡 + 𝜂 − 1 ℎ 𝑠𝑡 ≥ 0

Agrawal and Sreenath (2017)
Rasmussen (2004)

Constraining the Policy Search

7

We now have a barrier function condition to ensure safety

• Lets use it to compensate for unsafe controllers proposed in learning

Define safe set by set of affine barrier functions:

ℎ 𝑠 = 𝑝𝑇𝑠 + 𝑞

𝜋0

𝜋𝑜𝑝𝑡
Π𝜃

𝜋1
𝜋2

𝜋𝑘

Policy Space

𝜋𝑖: Policy after learning iteration 𝑖
𝜋𝑜𝑝𝑡: Optimal policy to be learned

Set of
Safe Policies

ℎ 𝑠 ≥ 0

Π𝜃

What if actuation limitations prevent us from satisfying the safety condition for all 𝑠 ∈ 𝐶?

Graceful Degradation of Safety

Best solution: Define maximal safe set such
that safety condition can be always satisfied

Next best solution: Ensure that we stay as
close as possible to defined safety set

sup
𝑎𝑡∈𝐴

ℎ 𝑓 𝑠𝑡 + 𝑔 𝑠𝑡 𝑎𝑡 + 𝜇𝑑 𝑠𝑡 ± 𝑘𝛿𝜎𝑑 𝑠𝑡 + 𝜂 − 1 ℎ 𝑠𝑡 = −𝜀 𝑠𝑡

Potential safety
violation of 𝜀

Suppose that for all 𝑠 ∈ 𝐶, the safety condition above is satisfied with
𝜀(𝑠) ≤ 𝜀max. If for all 𝑠 ∈ 𝐶𝜀, the safety condition is satisfied with 𝜀(𝑠) ≤
𝜀max, then the larger set 𝐶𝜀 is forward invariant with probability 1 − 𝛿 .

Assume safety condition cannot be satisfied for all 𝑠 ∈ 𝐶

Scenario 1: Scenario 2:

𝐶 ∶ 𝑠 ∈ ℝ𝑛 ∶ ℎ 𝑠 ≥ 0

𝐶𝜀 ∶ 𝑠 ∈ ℝ𝑛 ∶ ℎ 𝑠 ≥ −𝜀max

Constraining the Policy Search

Anytime RL controller proposes an unsafe action, project that control action to the “closest” safe
action

Quite inefficient, especially if the RL policy continues to “search” near unsafe policies
• Adding a compensatory mechanism can distort the learning process

𝜋0

𝜋𝑜𝑝𝑡
Π𝜃

𝜋1
𝜋2

𝜋𝑘

𝜋𝑖: Policy after learning iteration 𝑖
𝜋𝑜𝑝𝑡: Optimal policy to be learned

Set of
Safe Policies

ℎ 𝑠 ≥ 0

Π𝜃

Guiding the Policy Search with Barrier Functions

10

𝑠𝑡 , 𝑢𝑡
𝑅𝐿, 𝑟𝑡 𝑠𝑡 , 𝑢𝑡

𝑅𝐿 + 𝑢𝑡
𝐶𝐵𝐹 , 𝑟𝑡RL algorithm learns the association, , when the association is really,

𝜋0

𝜋𝑜𝑝𝑡
Π𝜃

𝜋1
𝜋2

𝜋𝑘

𝜋𝑖: Policy after learning
iteration 𝑖

Set of
Safe Policies

ℎ 𝑠 ≥ 0

Π𝜃

Guiding the Policy Search with Barrier Functions

Incorporate compensatory barrier
functions from previous policy iterations

Guarantee safety and guide policy search towards the “safe” region

𝑢𝑅𝐿

𝑢𝑅𝐿

11

𝜋0

𝜋𝑜𝑝𝑡
Π𝜃

𝜋1
𝜋2

𝜋𝑘

𝜋𝑖: Policy after learning
iteration 𝑖

Set of
Safe Policies

ℎ 𝑠 ≥ 0

Π𝜃

𝜋0

𝜋𝑜𝑝𝑡
Π𝜃

𝜋1
𝜋2

𝜋𝑘

𝜋𝑖: Policy after learning
iteration 𝑖

Set of
Safe Policies

ℎ 𝑠 ≥ 0

Π𝜃Π𝜃

Simulations

Control this car

1-D Car Following

Try to learn an optimal (max fuel efficiency)
controller for acceleration of car 4, while maintaining
minimum headway from other cars.

12

Simulations

Inverted Pendulum
Try to swing/maintain the pendulum upright, with small penalty on
actuation. Safety region is between ±1 rad from the upright position

No safety violations. Obviously this application is contrived,
since often the optimal solution is to swing through the
unsafe region. This method would not be good for these
types of applications.

13

Conclusion

• Reinforcement learning can be a powerful tool for controller synthesis

• Current RL techniques are slow at learning and do not include safety constraints

• Using barrier functions, we can constrain the system to safe behaviors while learning,
and improve learning efficiency

14

Challenges/Next Steps

• How can we learn/expand a valid safe set ℎ(𝑠) online?

• How can we further leverage crude model information to improve learning of controllers?

• Lot of recent interest in model-based RL, but no clear view on how to best incorporate
this model information

