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Motivation

Machine learning is promising to enable new technologies ranging from
autonomous cars to robot manipulation

Safety is critical

We must ensure that robots either remain away
from obstacles or within a workspace, even
when it is still learning

In this work, we introduce model information (through barrier functions) into
the reinforcement learning framework to guarantee safety during learning



Model-Free Reinforcement Learning

Reinforcement learning (RL) learns an optimal policy through interactions with
the environment:

fit a model to
estimate return
generate samples
(i.e. run the policy)
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Policy gradient-based optimization with no
prior information:
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Silver et al. (2014) Allows us to optimize policy with no model information

Lillicrap et al. (2015) (only sampled trajectories from interactions)
Schulman et al. (2015)



Safety during Policy Search

Throwing away any model information we have — learning from scratch...

Slow Learning, high variance in policies

No guarantees on system safety! Usually no replay in real world.
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Defining Safety of Policy

Consider an arbitrary safe set, C, defined by the super-level
set of a continuously differentiable function i : R"™ — R,

C:{seR":h(s)>0}.

To maintain safety during the learning process, the sys-
tem state must remain within the safe set C

We want to restrict policy search to
policies T such that for all s; € C, the
next state s;,; € C under policy

nt = max Errlv® R(st g, Se41)] s.L.
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Enforcing Safety through Barrier Functions

Given the safe set C defined previously, the continuously
differentiable function h is a discrete-time control barrier
Sivq = f(s¢) + g(sg)as + d(s

er1 = f(se) + g(se)ae (s¢) function (CBF) for the dynamical system if there exists

n € [0,1] such that for all s; € C,

Assume control-affine dynamics:

d is unknown, but either (1) bounded, or
(2) described by a mean/variance. [h (_f(st) t ols)as+ (_[(Stj) - ljh(sf_)] -

sup
at Er‘l

If we can find an a; that satisfies this safety condition for

Gaussian Process model parameterizes d(s)
all s € C, then we are guaranteed a safe controller.

with mean 4 (s) and variance g4 (s)
* Bounds model error with given probability

sup [h(f(st) + g(sp)a; + pa(se) = kSUd(St)) + (- 1)h(5t)] =0
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If we can find action a; that satisfies this condition,

Agrawal and Sreenath (2017) then safety certified with probability 1 — &
Rasmussen (2004)



Constraining the Policy Search

We now have a barrier function condition to ensure safety
* Lets use it to compensate for unsafe controllers proposed in learning
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What if actuation limitations prevent us from satisfying the safety condition for all s € C?



Graceful Degradation of Safety

Assume safety condition cannot be satisfied forall s € C
Potential safety

violation of &
sup [h(f(St) + 9g(sp)ay + pna(se) = kSUd(St)) + (- 1)h(5t)] = —&(s¢) /

at€eA
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! Suppose that for all s € C, the safety condition above is satisfied with

L e(s) < M [fforall s € C,, the safety condition is satisfied with £(s) <
. €M3X then the larger set C, is forward invariant with probability (1 — §).

C:{s €R": h(s) =0}
C.:{s €R": h(s) = —eMax}

Scenario 1: Scenario 2:

[ . . :

a Best solution: Define maximal safe set such
1 that safety condition can be always satisfied
' Next best solution: Ensure that we stay as

= close as possible to defined safety set
|




Constraining the Policy Search

Anytime RL controller proposes an unsafe action, project that control action to the “closest” safe

action
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self driving cars aren't even hard to make lol just program it not to hit stuff

T ronpaulhdwallpapers

if(going ToHitStuff) {

dont();

}
J

Quite inefficient, especially if the RL policy continues to “search” near unsafe policies
* Adding a compensatory mechanism can distort the learning process
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Guiding the Policy Search with Barrier Functions
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. . . RL e . . RL CBF
RL algorithm learns the association, (St; Ut :Tt) , when the association is really, (St:ut + U :Tt)



Guiding the Policy Search with Barrier Functions
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Guarantee safety and guide policy search towards the “safe” region



Simulations

Control this car

1-D Car Following

Try to learn an optimal (max fuel efficiency)

controller for acceleration of car 4, while maintaining

minimum headway from other cars.

Proximity to Collision
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Simulations

Try to swing/maintain the pendulum upright, with small penalty on

Inverted Pendulum actuation. Safety region is between +1 rad from the upright position
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Conclusion

 Reinforcement learning can be a powerful tool for controller synthesis
* Current RL techniques are slow at learning and do not include safety constraints

 Using barrier functions, we can constrain the system to safe behaviors while learning,
and improve learning efficiency

Challenges/Next Steps

* How can we learn/expand a valid safe set h(s) online?
 How can we further leverage crude model information to improve learning of controllers?

e Lot of recent interest in model-based RL, but no clear view on how to best incorporate
this model information



